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Abstract: This paper develops and tests implications of an oligopoly pricing model. The model 
involves capacity investments that are made before demand is revealed and pricing decisions that 
are made after demand is known. The model predicts that during a demand expansion the short 
run competitive price is a pure strategy Nash equilibrium, but in a recession firms set prices 
above the competitive price. Thus, price markups over the competitive price are countercyclical. 
Prices set during a recession are more variable than prices set during expansionary periods, 
because firms use mixed strategies for prices in recessions. This model is confronted with data 
from U.S. manufacturing industries. The empirical analysis utilizes a time series switching 
regime filter to test the unique predictions of the model, namely that (1) price changes are more 
variable in recessions than in expansions and (2) the form of the distribution of price changes 
differs between recessionary and expansionary regimes. Fourteen out of fifteen industries have 
fluctuations consistent with this oligopoly pricing model. The data is also analyzed to compare 
the predictions of this model with those of an optimal collusion model. 
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in prices and industry efficiency over the business cycle. We refer to this as a non-collusive 

oligopoly model to distinguish it from collusive theories of oligopoly behavior over the business 

cycle. Our model emphasizes the role of long run production capacity investments that must be 

made before demand conditions are known. After capacity investments are made, firms learn 

about the level of product demand and choose prices. The pricing incentives for firms differ 

depending on the level of demand. If demand is high, then the short run competitive (market 

clearing) price is a pure strategy Nash equilibrium. However, if demand is low, then capacity 

constrained firms have an incentive to deviate from the short run competitive price. The typical 

result is that firms adopt mixed strategies for prices that involve a markup over the short run 

competitive price and that generate excess production capacity. 

Our non-collusive oligopoly model predicts that output prices are procyclical, as do many 

other theories. The key prediction that distinguishes the model from other theories is that output 

prices are predicted to have greater variance during low demand periods than during high 

demand periods. Two other implications of our non-collusive oligopoly model are noteworthy. 

First, price adjustments are sluggish in the downward direction, relative to perfectly competitive 

prices. If demand changes from high to low then oligopoly firms reduce prices by an amount 

less than the change in the competitive price, since oligopoly firms charge a markup over the 

short run competitive price when demand is low. A second (and related) implication is that 

existing capacity is utilized efficiently when demand is high but may be utilized inefficiently 

when demand is low. Oligopoly price markups above the short run competitive price can lead to 

less output and employment than is efficient when demand is low. 

In Section I we formalize the idea that ex ante capacity investments coupled ( w h e n  ) 3 T j  0 . 0 0 6  v a r i 6 2  0  T d  ( i 0  T d  t i v e  ) T 9 7  0 . 0 1 0 4  T c  3 . 5 2 1  0  T d  ( o v e r  ) T o n  
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duopoly model of investment and pricing in which product demand may 
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SIC level spanning 1958-1981, they find that more concentrated industries have more procyclical 

margins. As they note, these estimates may be biased upward (downward) if marginal cost is 

greater (less) than measured average variable cost. Consistent with the Rotemberg and Saloner 

predictions, Domowitz et al. further find that industries with high price-cost margins have more 

countercyclical price movements. However, Domowitz et al. use industry-level changes in 

capacity utilization as a proxy for business cycle movements. Low capacity utilization at the 

industry level may simply be a result of high prices, rather than the result of a downward shift in 

demand. Bresnahan (1989) also points out the limitations of cross-industry comparisons of 

competition when assessing cyclical variations of margins and prices. 

To avoid the problems of using accounting data for estimating the price-cost margin, 

Domowitz (1992) takes an approach that examines total factor productivity. He adjusts the 

Solow residual to allow firms to price above marginal cost and then permits the price-cost 

margin to vary with the level of aggregate demand as measured by capacity utilization in 

manufacturing. Domowitz's point estimates indicate that there is a negative correlation between 

the margin and aggregate demand movements; however, the standard errors are large enough so 

that the null hypothesis of acyclicality cannot be rejected. 

Bresnahan and Suslow's (1989) study of the aluminum industry does not reveal any 

evidence of oligopoly marz0gopoly 02n.6 .ity...3eo0.001oJ 0tr3u4131r590.0009 Tc6E3-66n1vcp.md4.2ru5T2.3512 Tsl07ar a n d  o n d u 3 a T j  0 . 0 1 2 g h T j . 3 2 - 9 0 8 L s . 0 0 2 1  0 2 1  T c  1 . 2 2 3 4  T n 8 1 2 c 7 1 ( o a . 0 r y  ) T j  a n  
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by linear average variable costs. The aluminum industry is part of one of the industry groups 

considered in our empirical analysis. Our empirical results for this industry are largely 

consistent with theirs; we find no evidence of price markups above the competitive price in 

recessions for this industry. However, this industry is the exception rather than the rule among 

the industries that we examine. 

Wilson (1997) reports evidence from laboratory experiments on oligopoly pricing. The 

experiments are similar to Davis and Holt's (1994) posted offer pricing experiments except that 

Wilson considers the effects of a demand shift rather than the effects of a supply/capacity 

change. The results are broadly consistent with the model's predictions. When demand is a7pply/capa09 Tc 1.55 0 3 Td (rulft )Tj 0ne157 Tc 3.152 0 Td (the )Tj 0.0333 Tc 1.56 0 Td (s62ft )Tj 0.0005 Tc 1.716 0 Td ils ( a r e  ) T j  0 . 0 0 0 9 2  T c  2 . 7 4 3  0  T d  ( d e 8 a n d  ) T j  0 . 0 0 8 5  T c  3 3 . 5 5  0  T d  ( i s 6 e  ) T j  0 . 0 0 3 3 . 7 1 4  0  - i d 0  T d  2 9 0 2 p e t i t i v e l o w 0 1 T c  - 3 9 . 1 8 0  T d  ( i 1 2 c e  ) T j  - 0 . 0 0 1 s  T c  4 . 3 9 7  0  T d  ( t h v i s  ) T j  - r . 0 0 4 2  T c  - 3 9 . 1 1  T d  ( c o 2 e  ) T j  0 . 0 . 0 0 6 6  T c  2 3 . 1 5 2  0  T d  ( t 7 7 7 ) T j  0 . 0 3 3 3  T c  1 . 5 6  9 2  - 2 . 3 3 8  7 2 ( c h a n g e .  ) T j . 0 0 0 5  T c  1 . 7 1 6  0  T d  i l 4 7 f e r  9  T 1 t ' s  a 4 3 f t  l a 9 9 e  d 9 l e  br71t's 

d 5 6 a n d  T h a t  a 6 e  ihe Da 
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e E (0,1). All consumers are assumed to have a common value, v, for one unit of the product; 

the market demand is then a step function with height v and length a. 

The marginal cost of capacity in the first stage is c. Firm one chooses capacity x and firm 

two, capacity y. The marginal cost of production is constant in stage 2, and is normalized to 

zero. The parameter v can be interpreted as the value of the good minus the short run marginal 

production cost. We assume that both firms know v and c, with v> c > 0. 

The level of demand is observed before firms set prices in stage two. A subgame in stage 

two is defined by the triple, (x,y,a). There are three cases to consider. First, suppose that x+y ~ a. 

This is region A in the graph of capacity pairs in Figure 1. If the capacities are in region A, then 

a price equal to v is a dominant strategy for each firm. Note that v is also the short run 

competitive price when capacities are in A. 4 A firm's subgame payoff (revenue) is simply v times 

its capacity. Second, suppose that x;;::: a and y;;::: a. Each firm has enough capacity to serve the 

market by itself and the pricing sub game corresponds to a situation of Bertrand price 

competition. This is region B in Figure 1. The unique subgame Nash equilibrium (NE) has both 

firms setting price equal to zero (the short run competitive price) and each firm earns zero in the 

subgame. The final case is represented by region C in Figure 1. Total capacity excee (enough )n 0 Td 2.83 415.93 s.7d (firm )Tj 0.02 Tc 2.812 Tc 4.7TTj 0.02 Tsiz1.4527 0 0 11.45 Tm (of )Tj 0.u8(NEj 0 Tcepre 11.4 0 0 11.4s )Tj 8 305.52 Tm (T81(excj 0.0242 Tc 1.345 06401 Td (subga0 Tc 3.2.946 0 T Td (bsuppose )T05.52 043 2.233 0 buby )Tj 0.07.0165 T345 0 Td atrice) )Tj 0.015 T 2.106 0 leastrice) )T5.0183 Tc45 0 Td onc 4.7TTj 020201 Tc8 2.555 0 (earns )Tj 0.0217 Tc 00-39.212 -(represent153 Tc 1.12.168 0 Ttoin )Tj 0.0122 Tsiz1.4527 0 0 mallns the a . c e e  ( e n o u g h  ) n  0 . 0 0 . 5 3 2  0  T I t h e  i s  tegregion ( N E )  game c o r r e s p o n d T j  0 . 0 2 3 8 8 4 3  T c  5 . 
 . 9 p t N E )  c a s e  i g u r e  

i w h i ( f i r m  ) T j  1 . 0 1 8 3  T 8 1 2  0  T d  ( o n c  4 . 7 T T j  3 9 4 e .  ) T j  0 5 6 c  2 . 5 2 4  0  T d  ( s e ' r e p r e s e n t e d  T c  0 . 9 1 T c  3 . 7 9 6  0  T d  ( t o  ) T j j  0 . 0 2 1 7  T c T c  5 T c  2 . 8 1 2 ( i s  ) T j  0 . 0 0  0 . 0 1 2 9 c  1 . 9 3 5  0  d  ( i ) . 0 . 0 1 8 1  T c  0 . 7  0  T d  ( i A  3 8 6 . 7 8  3 0 1 6 9  T c  2  2 . 5 5 5  0  0  T d  ( N a s h  ) T j  0 . 0 2 4 3  7  T c - 3 8 . 9 8  -  ( e q u i l i b r i u m  ) T j  0 . 0 6 3 9 . 8 1  - 2 . 1 9  0  T d  ( ( N E )  ) T j 2 0 8 0 2 8  T c 3 2  0  T d  ( F i v o l v e r e g i o n  ) T j  / T 1 _ 3 4 T j  0 . 4 6  0  T  i x ( b y  ) T j  0 . 1 6 6 0 1 6 8  T c  2 3 4  0  T d s d  ( t e g i e r e g i o n  ) T  0 0 0 2 8  4  T c 3 . 7 8  - 2 . f o r h e  ) T j  0 0 7 . 0 1 6 5  T 3 2 . 4 9  0  T d 0  T d  s . c e e  ( e n o u 0 4 7  T c  ) T j 3 2 4 2  2 . 5 2 4  0  T d R e y n o l d s y  ) T j  0 . 0 2 . 0 1 8 1  T c 9 - 3 8 . 9 8  -  ( e a c h  ) T j  0 1 0  T c  3 . 9 4 - 3 8 . 9 8  - W i l s 1 . 4  4 4 5 . 8  . 0 2 1 1  T 0 4 3 4 - 3 8 . 9 8  - ( 1 9 9 7 ( a n d  ) T j  0 . e d  T c  0 . 2 c - 3 8 . 9 8  - d e r  ( p r i c e )  ) T  ) T j  0 . 0 0 . 4 5 2 7  0  0 1 9  0  T d  ( ( N E )  ) T j 0 . 0 1 6 8 T c 3 1 8 4 9  0  T d 0  T d   3 8 6 . 7 8  3 0 5 . 5 2  T c  2 . 4 9  0  T d d i s d  i b u b T j  r e p r e s e n t 1 0 2 8 5  T 5 . 7 0 - 3 8 . 9 8  -  ( e a c h  ) T j  0 5 . 0 1 7 9  T c 1 4 3  T c  5 . 1 x p e c  ( b y  ) T j  0 . 0 2 0 2 4 3  7  T 5 6 c  3 . 8 1  r e v e n u e r e g i o n - T j  0 . 0 2 4 3  7  T 8 . 7 8  - 2 . f o r h e  e n o u g 0 2  T c  2 5 9 3 . 7 8  - 2 . E 9  0  T d  ( ( N E )  ) T j 0 0 0 0 2 8  T c 3 3 4  0  T d  ( 0  T d  s r i c e )  ) T  f i r m  r u n  competitive Nash 
(NE) p r i c e  



function (see Reynolds and Wilson (1997)): 

vx (x,y) E A 
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Expected revenue for firm two is given by r(y,x,a). The function r(·) is continuous in each of its 

arguments. 

In stage one firms choose capacities. The level of demand is uncertain in stage one. 

Expected profits as a function of capacities are 

lZ"(x,y) = Br(x,y,g) + (1- B)r(x,y,a) - ex 

for firm one and lZ"(y,x) for firm two. 

The following two assumptions are utilized. 

Assumption AI: (1- B)v > e 

Assumption A2: .1 a> a 2-

Al is a condition that makes it attractive for firms to invest so that total capacity is sufficient to 

serve all consumers when demand is high. Without A I, firms would not (collectively) invest in 

capacity beyond g, and excess capacity would never emerge. A2 limits the difference in 

demand levels; high demand is no more than 50 percent above low demand. In the absence of a 

condition like A2, an equilibrium may involve a Bertrand-type outcome with prices equal to 

short run marginal cost when demand is low. 

Under Al and A2 a pure strategy equilibrium in capacity choices exists. The derivations 

appear in Appendix A. There are two principal types of reaction function configurations. If 

B::;; a(1- e I v) I (3a - 2g), then reaction functions are as in Figure 2A. There is a continuum of 

bound on the interval of competitive prices. 
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equilibria, which includes a symmetric capacity pair. If 
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price rigidity in the our model. The rigidity can be understood by noting that when demand 

changes from high to 
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learn the actual level of demand and choose prices. For industries with large irreversible 

capacity investments (e.g., chemicals), this must be the interpretation. 

We add a feature to the model to allow for price variations due to variations in production 

costs. Let bt be the real short run marginal cost of production in t, and let rt be consumers' real 

reservation price in t. Assume that bt is an i.i.d. random variable with E(b() = b > 0 and var= 61d thwinaume inat t  thservation anices. Tj 0.002 Tc 3.8090 Td (red )Tj 0.0014 Tc 1.85480 Td (reort )Tj 0.0003 Tc 2.374 0 Td (rea )Tj 0.006334c -38.4662-2.29441d (marginal )Tj 0.0109 0  3.95170 Td (conss )Tj -0.00359Tc 2.321 0 Td (wiar)Tj 0.00498Tc 1.46570 Td (vaperfectlyTj 0.0049 Tc 3.95189 Td (consevelate )Tj 0.008959c 5.029 0 Td (coFirm Tj 0.002 5Tc 2.324 0 Td (a obrvateTj /T1_1 1 Tf -0.035 Tc 10.866709 0 11.3 486.461 552 499 T57 )Tj /T1_0 1 Tf -0T02 Tc 11.7 0 0 11.7 394498 61552 499 T57d )Tj /T1_1 1 Tf 0.0c 3.61 0 Td (var= 3708 61552 499 T57Tj 0.505 -0.149 0  (t )Tj /T1_0 1 Tf -00095 1c 11.7 0 0 11.7 39482.345 52 499 T57dfrprTj 0.0014 5c 2.259 0 Td (Lecapacitie)Tj -0.00359Tc 2.48 00 Td (wiar)Tj 0.004917c 1.466 0 Td (Lese)Tj 0.000186c 1.469 0 Td (in )Tj 0.ar -0.140.012139.4 0 119.4 5091 0  52 499 T57)Tj /T1_0 1 Tf -0T02 Tc 11.7 0 0 11.7 395176 61552 499 T57d )Tj /T0049 3c -38.465 Tm.2933Td (t ber )
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Now consider the infinite horizon game beginning in period one, given initial conditions, 

(ao ,so), Let b'be a common discount factor, where we assume that rIb' < 1, so that payoffs are 

bounded. We focus on equilibria that have two features: (1) firms use strategies that constitute 

an equilibrium for the two-stage game in each period t, conditional on (a t-1> S t-I), and (2) the 

market shares of capacities are the same whenever the previous period state is the same. 

Equilibria with these features yield a stationary Markov process for price and quantity changes. 

The next step of the analysis is to characterize such a process. 

Suppose that (St-I ,St) = (1,2); i.e., there is high growth in t-1 and low growth in t. Then 

III period t firms utilize mixed strategy distributions of prices. As long as St-I = 1, this 

distribution is the same, regardless of the value of at-I, given the features of the equilibrium we 

consider. Let mit be a random variable representing the b e  8 8 o c e s s  86presenti.05 Tc 12.5289 0 Td.33947d (Th4(th)Tj 0argij -4 Tc 11.14 0 Td (nd )Tj 0.Tj duc0.014 Tc 5.040330 Td (72 )Tj 0.0cost, Tc 3.672 0 Td (g6Them )Tjbas061 Tc 3.1250 Td (thocess )T014 Tc 11.14 0 Td (25at )Tj /T1ei07 Tc 1.51760 Td (grocess )T0.0061 Tc 3.12250 Td (8tep )Tj 0.0 0.00ies,8 Tc 1.59120 Td (36presentiwi0019 Tc 0.05 Tc 10.5044 0 Td7 316.68 467.7 (3m (0 9s )Tj 0mI0 1 Tf -0.0103 Tc 0 Td8 120.098 125 435m (0 9s )Tj 0E18 Tc 5.1190 0 11.7 83.06 494.40con4 (0 9s )Tj 0(0, 1 Tf 0.05 Tc 10.5071 0 0 9452316.68 467405 T4 (0 9s )Tj 0v], 1 Tf0 1193316.68 467433 Tm (0 9s )Tj 0E(ml1 Tf 0.05 Tc 10.0 Td8 520.098 d (55 Tm (07ther 0 T0 Tc 1.6tep onsider. _0 1 Tf 0 T5 Tc 109.316.68 4m (72 T9 (0 9s )Tj 0= 1 Tf 0.0077 Tc 11.50 Td7 822220.098 12480.222(0 9s )Tj 0ml 1 Tf 0.05 Tc 10.ri7007489.54  (t6 Tm (0 9s )Tj 0< 1 Tf -0.0103 Tc 11.872 0 0 15the )T.61 494.6 (wm (0 9s )Tj 0v,1.343 0 Td8 120.098 12157.sid365 andTj 024 Tc 5.040 0 0 11.7 406.68 52265 epr37t-I, )Tj /n1 1 Tf 0 Tc 9.4 0 5071 0 0 9255316.68 46792.til37t-I, )Tj Var(ml1 Tf 0.05 Tc 10.0 Td8 920.098 954 7494.7 (89r 0 T0 Tc 1.5Tm  924 0 r. _0 1 Tf 0 T0103 Tc13 920.0913 921339 9l37t-I, )Tj = 1 Tf 0.02 9.4 0 5071 0 8.7 3316.685 T.688 T4 37t-I, )Tj (j'ml 1 Tf.0 Td5 T.6.685 T.665 2il37t-I, )Tj •01 Tf 0.0077 Tc 11.750 0 11.7 83.06 494.7 0 Tm 34t-I )Tj /Tuppos74 Tc 1.659 0 Td (90 )Tj -0.0nstea61 Tc 3.127 0 Td (he )Tj 0.00at 1 Tf 0.02 9.4 0 5071 0 0 9744569.19 494213 0 034t-I )Tj //T1_0 1 Tf 49854769.19 4942339 034t-I )Tj /,St_0 1 Tf 0 T0103 Tc.ri7003 920.0913 92268 6at34t-I 9 s  v 9 3 4  t t e p  1 4  0  
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different in recessions than in booms. For example, suppose that bt is normally distributed. 

Then prices in booms are normally distributed, while prices in recessions consist of a normally 

distributed marginal cost component and a non-normally distributed price markup component. 

This generates price changes in recessions that have a distribution that is not Gaus~ian. 

1 
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in an optimal collusive model. More importantly, a positive variance for quantity change is 

permitted in each state. The state variable is not observed, so that the observed path of price and 

quantity changes must be used to make inferences about the values of the state variable (as with 

the Kalman filter). The unobserved state is assumed to be one of two growth rates, "high" or 

"low," and the probabilistic switch from one state to another is assumed to follow a Markov 

process. This approach to the issue of cyclical 
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Yt are not independent draws from a mixture of normal distributions. The inferred probability 

that Yt is drawn from one distribution depends on all the realizations of Y prior to time t. This 

approach differs from the Bresnahan and Suslow (1989) switching regime regression in that all 

prior information is used to infer the current probability that Yt is drawn from a particular 

distribution. 

The bivariate model of stochastic segmented trends permits a wide variety of behavior for 

the series. First, the industry mean production growth rates may pick up slow or fast growth 

rates of production for an industry. The production growth rates could also be the same in both 

regimes, or one state may reflect recessionary periods and the other expansionary periods. 

Likewise, these combinations are possible for the contemporaneous real price regimes. 

The model described above is the basis for estimation of a parameter vector, 

8=(,ull,,u12,,u21,,u22,Qll,Q12,Q2PQ 22,Pll,P22)'. This vector has 22 parameters. The sample 

log likelihood function, In p(y T' Y T -1'"'' Y 1; 8), which is to be maximized with respect to the 

unknown parameters of 8, can be constructed from the conditional likelihood of Yt. The 

conditional likelihood of Yt. p(Y,!Y,_p ... 'Yl;8), is a byproduct of Hamilton's (1989) filtering 

algorithm. We can infer the probability that Yt was drawn from a particular state Sf based on all 

information available at time t: p(s,! Y p ... ,y,; 8). Furthermore, a full sample smoother can be 

used to draw inference on the regime at date t using all the information available ex post: 

8 Two issues arise when attempting to find the maximum likelihood estimate {). Both involve the process of 
finding the global maximum of the sample log likelihood function. From the filter we can determine the sample log 
likelihood function as the sum of the conditional log likelihoods: 

T 
III p(y T' Y T -I , ... , Y I) = t~IIIl p(y t I Y (-I , ... , Y I) . As in Hamilton (1989) the sample log likelihood can be 

maximized using numeric hill-climbing methods, but systems with a large number of parameters (e.g., twenty-two) 
often have many local maxima and require lengthy computing time. Hamilton (1990) shows how the switching 
regime filter can be estimated using the EM (expected maximum likelihood) algorithm developed by Dempster, 
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deseasonalized usmg Harvey's (1993) basic structural model (pp. 142-44). In 
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The production growth rates for the newspaper (SIC 271) and metalworking machinery 

(SIC 354) industries are not statistically different from zero in state 1 or 2. Leather (SIC 31) 

production is trending down for the entire sample, and the mean growth rate in production in the 

food (SIC 20) industry is constant. 

An alternative empirical approach is to estimate a model in which price and quantity 

changes depend on the current state (Sf E {1,2} ) but not on the previous state. Such a model has 

two bivariate distributions for p and q, rather than four. The point estimates and the 
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of 
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with frequent regime 
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Distribution of Price Draws 

We have assumed that Yt has bivariate normal distributions in all states. Assuming that 

expansionary price changes come from a normal distribution, the model predicts that 

recessionary price changes come from a non-normal distribution because firms use non-normal 

mixed strategy distributions for prices during recessions. 17 Following the work of Newey (1985) 

and Hamilton (1996), we make use of the score statistics in tests that certain moment restrictions 

of the normal distribution hold for the data for both regimes. In particular, we will take the 

standard approach and examine the third and fourth moments, jointly and individually for each 

senes. The null hypothesis then implies the following expectations hold for the joint test: 

Hamilton (1996) provides the scores for the univariate case, which can be naturally extended to 

the bivariate model. The sample counterparts to the above moment restrictions are 

Let M be the T x 4 matrix whose t th row is given by 

17 Even though the recessionary price changes may not be Gaussian, the estimates in Table III are consistent quasi­
maximum likelihood estimates. 

I 
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1 
and let the matrix D be the T x 12 matrix of scores. For S = T (M'M - M'D(D'D)-I D'M), the 

Wald statistic, Tr'S-l r , is asymptotically distributed as a xi and tests whether ql and PI are 

jointly normally distributed. For only testing one restriction (column) of M, the test statistic is 

asymptotically Xl2 
• 

The results of the joint and individual tests for skewness and kurtosis are reported in 

Table VI. Column 2 reports the statistic for the joint test of normality for both regimes. There 

are clear rejections for all industries except food (SIC 20). Most of the individual series reject 
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current level of demand when they set pnces, but are uncertain of future demand levels. 

Rotemberg and Saloner show that a firm participating in a collusive group may have more 

incentive to defect during a boom period than during a low demand period, because the short 

term gains from defection are relatively large. Thus, an optimal collusive mechanism may 

involve lower prices (or markups over marginal cost) during booms than during recessions, in 

order to eliminate the incentive to defect. 

A recent paper by Bagwell and Staiger (1997) presents a theory of collusive pricing with 

demand alternating between expansionary and recessionary phases. Their formulation allows for 

autocorrelation in demand shocks. They prove that the prices for an optimal collusive 

mechanism are weakly procyclical when growth rates are positively correlated over time. Our 

empirical analysis shows that growth rates are positively correlated over time for most U.S. 

manufacturing industries. However, a variety of approaches are consistent with procyclical 

pricing, including our non-collusive oligopoly model, a theory of competitive pricing with rising 

marginal costs, and 

whphases. shockreg.0102 Tc1 T28a9 Tc 11(time. )Tr89 Tc  0 Td 14ory a l t e r n a 0 1 4 6  T c  2 . 9 8 T c  4 . 5 8 1 e o r y  a7 0 Td (whTj 0.0063 Tc -35.3ry )Tj 0.05 Tc 12944 0 0 (4d (shock 0.eve )Tj 0.0083 Tc2.3weakly )Tj 0.igopoly 89 Tc,Tc1.859 0 Td0nega
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a fairly high level of aggregation 
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It should be emphasized that our formulation does not rely on any form of collusion 

among firms, in contrast to much of the recent Industrial Organization literature on pricing over 

the business cycle. At the two- and three-digit SIC level of aggregation for manufacturing 

industries, we find less support for a model of optimal collusion over the business cycle than for 

our non-collusive oligopoly model. 

Future research may focus on how industry concentration is related to the variance of 

price changes at a more disaggregated industry level and how nature of costs affects oligopoly 

pricing incentives. Forming larger systems by grouping industries together may also improve 

estimation efficiency and increase the number of significant parameters. Since the empirical 

results suggest that the form of the distribution of price changes differs across recessionary and 

boom regimes, it would also seem worthwhile to develop a more sophisticated econometric 

model of the recessionary regime. 
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Appendix A 

Analysis of Two-Stage Game 

In stage one, firm one's expected profit is, 

7r(x,y) = Br(x,y,Q) + (1- B)r(x,y,a) - ex, 

where r(·) is the expected subgame revenue, defined on p. 7. 7t is continuous in (x,y) since 

r(·) is continuous in these arguments. However, 7t is not differentiable in x for all capacity 

levels, so one cannot rely exclusively on first-order conditions to characterize best responses. 

Consider the investment incentives for firm one, conditional on firm one being the larger 

firm (x > y). In this case assumption Al implies that expected profit is strictly increasing in x for 

x + y < a; 7t(x,y) = v(E(a) - y) - ex for x + y > a, so that 7t is strictly decreasing when total 

capacity exceeds the high demand level; and 7t is continuous in x at x = a - y. Therefore, if 

y < ta then 7t reaches a local maximum at x = a - y. This may not be a global maximum 

since 7t may attain a higher value for some x < y. 

The payoffs for firm one are more complex when it is the smaller firm (x < y). Consider 

first the best response to y E [Q, a]. Any best response will be less Tm (Any )Tj .05 Tc 12.36.198  11.6 490.2 3463 0 Tm (Any )Tj j /T1_0 1 Tf -.05 Tc 14.7347 02 35 0 0 10.5 469.93 34.500 82. stri1 .05 Tc 12.36.198  11.0 0.0025 Tc r824.12 40Tc 1d (it )6 490.2 34c /T1_1 1 Tc63.889 0 Td (to )Tj /857ed (wil3p 0 Tc 1.94 (l5509 0 0 11.5er8cj /T1_0 1 Tf 9o9tT9o9tT9or,8dr997dl1t )6 490.Tj /T186198r24l3p 08at05mny ).14 3460.78/T1_4 1 c294.12 405.13 Tm (82. )Tj d8t78,7e55509 0 0.957.12 9.93 34. Tc98r24l3p 08at05mny 3.354o 82. 
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Appendix B 

This appendix illustrates the derivations of the results presented III Table I for the 

predicted pnce and quantity changes. We define PI == In ~ -In ~-l and ql == In QI -In QI-l 

where PI is the average price and Qt is production in period t. The approximations of PI use a 

first order Taylor expansion: 

x - E (x) + y - E (y) 
In(x + y) ~ In(E(x) + E(y» + . 

E(x) + E(y) 

A derivation for the case, St-I = 1 and St = 2, is provided here. Derivations for the other 

three cases in Table I are similar to this. The period t price is the sum of .8.653 0 T



Table II 
Industries and Associated Price Indices 

Industry 
Foods 
Lumber and products 
Furniture and fixtures 
Paper and products 
Newspapers 
Chemicals and products 
Petroleum products 
Rubber and plastic products 
Leather and products 
Clay, glass, and stone products 
Nonferrous metals 
Fabricated metal products 
Agricultural machinery and equipment 
Construction machinery and equipment 
Metalworking machinery and equipment 
Electrical machinery and equipment 
Transportation equipment 

SIC Code 
20 
24 
25 
26 
271 
28 
29 
30 
31 
32 
33:3-6,9 
34 
352 
353 
354 
36 
37 

Price Index (BLS series) 
PPI, Processed foods and feeds (wpu02) 
PPI, Lumber and wood products (wpu08) 
PPI, Furniture and household durables (wpuI2) 
PPI, Pulp, paper, and allied products (wpu09) 
CPI, Newspapers (cuurOOOOse590 1) 
PPI, Chemicals and allied products (wpu06) 
PPI, Petroleum products refined (wpu057) 
PPI, Rubber and plastic products (wpu07) 
PPI, Leather (wpu042) 
PPI, Nonmetallic mineral products (wpu13) 
PPI, Nonferrous metals (wpul02) 
PPI, Fabricated structural metal products (wpul07) 
PPI, Agricultural machinery and equipment (wpull1) 
PPI, Construction machinery and equipment (wpul12) 
PPI, Metalworking machinery and equipment (wpul13) 
PPI, Electrical machinery and equipment (wpu117) 
PPI, Transportation equipment (wpu14) 

I 



Table III 
Maximum Likelihood Estimates for YI = [ql ,PI]' 

Parameter Food Lumber Furniture Paper Newspaper Chemicals 
(SIC 20) (SIC 24) (SIC 25) (SIC 26) (SIC 271) (SIC28) 

11t~ 0.219 0.260 0.370 0.326 0.042 0.494 

(0.048) * (0.118) (0.090) (0.076) (0.065) (0.043) 

11t~ 0.041 0.057 -0.065 0.031 0.124 -0.075 

(0.030) (0.060) (0.020) (0.023) (0.034) (0.023) 

14 0.198 -0.083 -1.117 -0.09 -0.347 -0.439 

(0.089) (0.445) (0.398) (0.260) (0.307) (0.261) 

14 -0.168 0.033 -0.267 0.222 -0.058 0.563 

(0.128) (0.342) (0.282) (0.180) (0.336) (0.365) 

Pll 0.991 0.941 0.985 0.976 0.986 0.981 
(0.007) (0.025) (0.008) (0.011) (0.013) (0.010) 

P22 0.972 0.844 0.878 0.893 0.921 0.873 
(0.023) (0.056) (0.077) (0.058) (0.060) (0.066) 

0,1 0.578 -0.067 3.062 0.203 2.852 0.010 1.549 -0.038 0.916 -0.095 0.611 -0.030 

(0.047) (0.049) (0.308) (0.220) (0.227) (0.071) (0.136) (0.060) (0.083) (0.074) (0.052) (0.036) 
-0.067 0.241 0.203 0.775 0.010 0.141 -0.038 0.148 -0.095 0.262 -0.030 0.169 

(0.049) (0.025) (0.220) (0.085) (0.071) (0.012) (0.060) (0.014) (0.074) (0.024) (0.036) (0.014) 

On 0.645 -0.072 9.449 3.889 4.397 -0.017 3.502 -0.318 1.884 -0.446 2.124 -0.450 

(0.113) (0.191) (1.201) (1.595) (1.292) (1.244) (0.592) (0.997) (0.478) (0.876) (0.633) (1.216) 
-0.072 1.418 3.889 6.888 -0.017 2.149 -0.318 1.51 -0.446 2.727 -0.450 2.431 

(0.191) (0.207) (1.595) (1.071) (1.244) (0.446) (0.997) (0.193) (0.876) (0.830) (1.216) (0.381) 

*Standard errors are in parentheses. 
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Table III continued 

Parameter Petroleum Rubber Leather Stone, Clay, Nonferrous Metals Fabricated Metals 
Refining (SIC 30) (SIC 31) and Glass (SIC33:3-6,9) (SIC 34) 
(SIC 29) (SIC 32) 

11t~ 0.276 0.628 -0.239 0.259 0.476 0.312 

(0.067) * (0.095) (0.099) (0.102) (0.137) (0.068) 

11t~ -0.046 -0.092 -0.003 0.029 0.627 0.020 

(0.083) (0.024) (0.091) (0.021) (0.140) (0.020) 

142 -0.018 -0.044 -0.273 -0.673 -0.713 -0.727 

(0.131) (0.655) (0.200) (0.360) (0.378) (0.221) 

f.4 0.218 0.154 0.238 -0.044 -1.272 0.073 

(0.442) (0.168) (0.371) (0.290) (0.214) (0.222) 

Pll 0.960 0.969 0.980 0.983 0.943 0.984 
(0.016) (0.012) (0.038) (0.009) (0.032) (0.007) 

P22 0.941 0.874 0.948 0.876 0.879 0.896 
(0.022) (0.054) (0.047) (0.066) (0.059) (0.066) 

0,1 1.043 0.131 2.714 -0.064 1.812 -0.031 3.159 0.040 2.941 -0.086 1.408 0.000 

(0.091) (0.188) (0.247) (0.083) (0.172) (0.243) (0.185) (0.079) (0.368) (0.477) (0.106) (0.051) 
0.131 1.581 -0.064 0.167 -0.031 1.446 0.040 0.144 -0.086 2.069 0.000 0.134 

(0.188) (0.146) (0.083) (0.015) (0.243) (0.180) (0.079) (0.012) (0.477) (0.191) (0.051) (0.011) 

On 2.192 -0.217 18.474 0.112 4.039 0.429 4.222 -0.433 8.816 -0.092 2.244 -0.212 

(0.244) (1.489) (2.388) (2.444) (0.531) (2.042) (1.000) (1.776) (1.887) (1.252) (0.465) (0.970) 
-0.217 24.796 0.112 1.587 0.429 15.310 -0.433 2.063 -0.092 1.915 -0.212 2.469 

(1.489) (2.375) (2.444) (0.170) (2.042) (1.542) (1. 776) (0.428) (1.252) (0.254) (0.970) (0.380) 

*Standard errors are in parentheses. 
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Table V 
Test of Different Price Variances Across Regimes 

Industry Ho: al~p = ai,p 
~2 * 

Ha: al~p ~ ai,p a 2,p 
~2 

al,p 

Likelihood p-value 
Ratio Test 

Food (SIC 20) 68.274 (0.000) 5.86 

Lumber (SIC 24) 109.508 (0.000) 8.14 

Furniture (SIC 25) 142.410 (0.000) 14.38 

Paper (SIC 26) 144.794 (0.000) 9.84 

Newspaper (SIC 271) 99.566 (0.000) 



Table VI 
Conditional Moment Normality Tests (Skewness and Kurtosis)* 

Test: Joint Test of 
Normality Skewness Skewness Kurtosis Kurtosis 

Variable: Yt qt Pt qt Pt 
Industry 

Food (SIC 20) 2.459 0.271 1.228 0.113 0.123 
(0.652) (0.603) (0.268) (0.736) (0.726) 

Lumber (SIC 24) 56.538 1.844 23.516 4.696 4.023 
(0.000) (0.175) (0.000) (0.030) (0.045) 

Furniture (SIC 25) 18.922 0.312 7.439 2.550 1.962 
(0.001) (0.577) (0.006) (0.110) (0.161) 

Paper (SIC 26) 8.984 3.222 4.427 4.085 3.397 
(0.062) (0.073) (0.035) (0.043) (0.065) 

Newspaper (SIC 271) 15.823 2.181 10.625 3.697 2.993 
(0.003) (0.140) (0.001) (0.055) (0.084) 

Chemicals (SIC 28) 10.670 4.349 2.088 0.309 4.218 
(0.031) (0.037) (0.149) (0.578) (0.040) 

Petroleum Refining (SIC 29) 10.007 0.003 1.656 2.084 8.345 
(0.040) (0.959) (0.198) (0.149) (0.004) 

Rubber (SIC 30) 23.788 12.757 3.774 12.229 5.255 
(0.000) (0.000) (0.052) (0.001) (0.022) 

Leather (SIC 31) 9.241 3.682 0.768 2.003 4.556 
(0.055) (0.055) (0.381 ) (0.157) (0.033) 

Stone, Clay, and Glass (SIC 32) 54.066 2.474 18.137 7.921 5.938 
(0.000) (0.116) (0.000) (0.005) (0.015) 

Nonferrous Metals (SIC 33:3-6, 9) 24.333 0.279 0.242 0.168 23.606 
(0.000) (0.598) (0.623) (0.682) (0.000) 

Fabricated Metals (SIC 34) 10.023 0.107 0.107 6.800 3.993 
(0.040) (0.744) (0.744) (0.009) (0.046) 

Agricultural Machinery (SIC 352) 22.579 1.473 10.208 0.478 4.401 
(0.000) (0.225) (0.001) (0.489) (0.036) 

Construction Machinery (SIC 353) 22.526 5.128 0.042 3.501 14.826 
(0.000) (0.024) (0.838) (0.061) (0.000) 

Metalworking Machinery (SIC 354) 22.620 1.076 9.348 0.055 2.626 
(0.000) (0.300) (0.002) (0.814) (0.105) 

Electrical Machinery (SIC 36) 44.848 3.755 15.090 1.693 3.317 
(0.000) (0.053) (0.000) (0.193) (0.069) 

Transportation Equipment (SIC 37) 36.802 1.288 11.152 9.713 3.963 
(0.000) (0.256) (0.001) (0.002) (0.047) 

Note: Column 2 statistics are asymptotically xi . Statistics in columns 3-6 are asymptotically x~ . 
Asymptotic p-values less than .1 are in bold. 
* The maximum likelihood estimates used in the calculations of the score were estimated without 
the Bayesian correction. 
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Figure 1 
Capacity Regions for the Pricing Subgame 
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Figure 2A 
Equilibrium Capacity Choices 
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Figure 3 
Equilibrium Mixing Distributions 
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Figure 4a 
Inferred Probability of Being in State 2 (Recessionary State) 
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