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Abstract

The theoretical literature of industrial organization shows that the distances be-
tween consumers and firms have first-order implications for competitive outcomes
whenever transportation costs are large. To assess these effects empirically, we de-
velop an estimator for m71(75)-4ts of spatial differentiation and spacial price discrimination
that recovers the underlying structural parameters using only aggregate data. We pro-
vide conditions under which the estimates are consistent and asymptotically normal.
We apply the estimator to the portland cement industry. The estimation fits, both



1 Introduction

In many industries, firms are geographically differentiated and transportation is costly. Yet

few empirical studies estimate structural models of spatial differentiation. We attribute

this dearth of research to a simple data availability problem: the most straight-forward

way to identify the degree of spatial differentiation – or, equivalently, the magnitude of

transportation costs – is to measure how firms’ market shares differ between nearby and

distant consumers. But this requires data on the geographic distributions of the market

shares. These data are difficult to attain and, indeed, we are unaware of any study that

exploits variation in market shares over geographic space.

The data availability problem is only exacerbated for industries characterized by spatial

price discrimination because it becomes necessary to account for the geographic distributions

of the prices, as well. While three recent studies apply econometric techniques to sidestep the

data availability problem in non-discriminatory settings (Thomadsen (2005), Davis (2006),

McManus (2009)),1 to our knowledge no previous work estimates structural parameters in the

face of spatial price discrimination – despite the oft-cited result of Greenhut, Greenhut, and

Li (1980) that two-thirds of surveyed firms employ some form of spatial price discrimination.2

This sparse empirical literature is in contrast to a storied theoretical literature (e.g.,



normal. We also conduct an empirical application and demonstrate that (1) estimation is



markets.4 These assumptions preclude inference regarding spatial differentiation because

the transportation cost cannot be estimated structurally. Further, markets tend to be delin-

eated based on political borders of questionable economic significance such as state or county

lines. Yet this approach has been employed routinely to study of industries characterized by

high transportation costs, including ready-mix concrete (e.g., Syverson (2004), Syverson and

Hortaçsu (2007), Collard-Wexler (2009)), portland cement (e.g., Salvo (2008), Ryan (2009)),

and paper (e.g., Pesendorfer (2003)).5

In the empirical application, we examine the portland cement industry in the U.S.

Southwest over the period 1983-2003. The available data include average prices, production,

and consumption, each at the regional level (e.g., we observe total consumption separately

for northern California, southern California, Arizona and Nevada). We find that the estima-

tion procedure produces impressive in-sample and out-of-sample fits despite parsimonious

demand and marginal cost specifications. For instance, the model predictions explain 93

percent of the variation in regional consumption, 94 percent of the variation in regional

production, and 82 percent of the variation in regional prices. The model predictions also

explain 98 percent of the variation in cross-region shipments, even though we withhold the

bulk of these data from estimation. The quality of these fits is underscored by the rich

time-series variation in these data due to macro-economic fluctuations.





tion.) The estimation procedure then selects the parameters that bring the implied equi-

librium firm-level prices close to the data. By contrast, Davis (2006) and McManus (2009)

exploit variation in firm-level prices and sales. They derive predicted sales in a number of

sub-markets for each candidate parameter vector, given prices and an observed geographic

distribution of consumers, and aggregate these predictions to construct predicted firm-level

sales. The estimation procedures then selects the parameters that bring the predicted firm-



3 The Model of Price Competition

3.1 The geographic space

We define the relevant geographic space to be a compact, connected set C in the Euclidean

space R2. We take as given that J plants compete in the space, and assume that each plant

is endowed with a fixed location defined by the geographic coordinates {z1; z2; : : : ; zJ}, where

zj ∈ C. We further take as given that a continuum of consumers spans the space, and assume

that each consumer has unit demand and a fixed location w ∈ C. The absolute measure

�(w) characterizes the geographic distribution of consumers and we define M =
∫
C �(dw) to

be the potential demand of the space. We denote the distance between any two points in

the geographic space, say a and b, as the Euclidean distance ∥a − b∥.

Without loss of generality, we partition the geographic space into N distinct geographic

consumer areas, such that each area Cn ∈ C is itself a connected set in R2. We conduct the

partition such that C1

∪
C2

∪
· · ·

∪
CN = C



produced by plant j, and c(Q; wj; �0) is a convex and differential marginal cost function of

known form. The vectors xjn and wj include demand and cost shifters, respectively, and the

matrix Xj stacks the relevant xjn vectors. Finally, �0 is a K-dimensional parameter vector.

We model consumer behavior using a conventional discrete-choice demand system.

Each consumer observes the plant locations and the available mill prices, and either purchases

from one of the J plants or foregoes a purchase altogether (i.e., selects the outside good).

The indirect utility that consumer i receives from plant j is:

uij = �c + �ppnj + �d∥w − zj∥ + x′
jn�x + �ij; (2)

where �ij is an idiosyncratic preference shock that is observed to the consumer and uncor-

related with distance and prices. We provide motivation for the preference shock to Section

3.4. Following standard practice, we normalize the mean utility of the outside option to zero.

Finally, (�c; �p; �d; �x) ∈ �0 are the demand parameters and the ratio �d=�p represents the

unit transportation cost incurred by consumers.

We assume that consumers select the plant that supplies the highest utility. Within

an area, this assumption defines the set of consumer characteristics (w ∈ Cn; �i) that lead

to the selection of plant j, and we denote this set

Ajn(pn; z; xjn; �0) = {(w ∈ Cn; �i)|uij ≥ uik ∀ k = 0; 1; : : : J};

where z = (z1; z2; : : : ; zJ). If ties occur with zero probability then the quantity produced by

plant j and consumed in area Cn is given by:

qjn(pn; z; xjn; �0) = Mn

∫
Ajn

@P (w; �); (3)

where P (·) denotes a population distribution function. We place two normalcy conditions on

demand, namely that qjn(pn; z; xjn; �0) is twice continuously differentiable and also down-

ward sloping in pjn (i.e., �p < 0).

For clarity, we sketch one possible geographic space in Figure 1. The dashed lines

delineate three consumer areas, C1, C2, and C3. Two plants operate in the space and are

characterized by the locations z1 and z2. A distribution of consumers span the space, and

both plants compete for each consumer. The plants imperfectly price discriminate by setting





and (2) demand in area Cn is unaffected by mill prices in area Cm for n ̸= m.

We now rearrange and stack the first-order conditions:

f(p; �; �0) ≡ p − c(Q(p; �; �0); �; �0) + Ω−1(p; �; �0)q(p; �; �0) = 0: (6)

A vector of prices that solves this system of equations is a spatial Bertrand-Nash equilibrium.

We define a mapping H(�0; �) : RK → RJN that matches the parameters of the model to

spatial Bertrand-Nash equilibrium given the exogenous data. Formally, the mapping is

defined by the equivalence f(H(�0; �); �; �0) ≡ 0.

3.4 Discussion

We offer three comments to help build intuition on the economics of the model. First,

spatial price discrimination is at the core of the firm’s pricing problem: firms charge higher

mill prices to nearby consumers and to consumers for whom the firm’s competitors are

more distant. However, aside from price discrimination, the firm’s pricing problem follows

standard intuition. A firm that contemplates a higher mill price from one of its plants to

a given area must evaluate (1) the tradeoff between lost sales to marginal consumers and

greater revenue from inframarginal consumers; and (2) whether the firm would recapture

lost sales with its other plants. If marginal costs are not constant, then the firm must also

evaluate how the lost sales would affect the plant’s competitiveness in other areas.

Second, the areas C1;C2; : : :CN



tion (see Section 6.1.2). In the more general case, the idiosyncratic preference shocks can be

motivated as capturing various plant- and consumer-level heterogeneity that, due to costly

bargaining or other reasons, is not reflected in mill prices.

4 Estimation

The model generates a rich set of predictions on equilibrium prices, production, and ship-

ments within the geographic space C. Yet the parameters of the model can be recovered

using relatively coarse data. In this section, we introduce a novel GMM estimation pro-

cedure that exploits variation in t = 1; 2; :::T time-series observations on aggregated price

moments (e.g., observations on average mill prices). We show that the GMM estimator is

consistent and asymptotically normal, given assumptions on the existence and uniqueness of

equilibrium. We then demonstrate that the estimator can be extended in a straight-forward

manner to incorporate observations on aggregated non-price moments (e.g., total production

or total consumption). The flexibility of these data requirements makes the estimator widely

applicable to economic settings characterized by spatial differentiation.

4.1 GMM estimation

We first clarify the level of detail on consumer locations, w ∈ C, needed to support esti-

mation. In many instances, precise consumer locations may be unavailable or too costly to

discover, so that the direct application of equation (2) is infeasible. We make the following

assumption on the exogenous spatial data available to the econometrician:

Assumption A1: The econometrician observes the mean distance between plant j and the

consumers in area Cn, for all j and n.

We denote the mean distance between plant j and the consumers in area Cn as djnt.

Under A1, we can rewrite the indirect utility equation as follows:

uijt = �c + �ppnjt + �ddnjt + x′
jnt�

x + �∗
ijt; (7)

where �∗
ijt is a composite error term that includes the idiosyncratic preference shock and the

consumer-specific deviation from mean distance. Formally, �∗
ijt = �ijt + �d(∥w − zjt∥− dnjt).

The composite error term is orthogonal to price and mean distance, given the assumptions

already placed on the model. As long as the distributions of �∗
ijt are known, or reasonable

10



approximations can be made, compute demand can be computed given the relevant prices

and the mean distances between plants and areas. We formalize this in Assumption A2.

Assumption A2: The econometrician knows the distributions of �



reasonable to further assume that the sampling error is independent of the “right-hand-side”

data �t. This simplifies the construction of the estimator, and we impose the additional

assumption here:

Assumption A4′: The sampling error is mean zero conditional on �t:

E[pd
t − S(H(�0; �t))| �t] = 0:

A4′ enables estimation with multiple equation nonlinear least squares, which is equivalent

to GMM with the optimal instruments

Zt = −@S(H(�0; �t))

@�0

Λ0(�0)−1; (10)

where Λ0(�0) ≡ E[S(�t)|�t]E[S(�t)|�t]
′ is the variance matrix of the aggregated error terms.

Thus, the sample moment equations that correspond to A4′ are

1

T

T∑
t=1

−@S(H(�; �t))

@�
C−1

T (pd
t − S(H(�; �t))); (11)

where CT is some consistent estimate of Λ0(�0) and � is a candidate parameter vector defined

within the compact subspace Θ.

We come now to the central methodological contribution of the paper. Estimation

based on the sample moments of equation (11) requires knowledge of equilibrium prices at

the plant-area level (i.e., H(�; �t)). Yet the data generating process provides only prices that

are aggregated and measured with error. The solution to this dilemma lies in numerical

approximations to equilibrium. Conceptually, it is possible to compute the equilibrium price

vector for any number of candidate parameter vectors, and then identify the candidate

parameter vector that minimizes the “distance” between the aggregated equilibrium price

vectors and the data. The power of modern computers makes this procedure feasible given a

convenient distribution of the composite error term (�∗
ij in equation (7)). In our application,

we are typically able to numerically compute a vector, call it H̃(�; �t), that satisfies the

first-order conditions of equation (6) to computer precision in a matter of seconds.

12



The GMM estimate that utilizes these numerical approximations is:

�̂ = arg min
�∈Θ

1

T

T∑
t=1

[pd
t − S(H̃(�; �t))]

′C−1
T [pd

t − S(H̃(�; �t))]: (12)

We think it is intuitive to think of the estimation procedure as combining an outer loop and

an inner loop. In the outer loop, the objective function is minimized over the parameter

space, whereas in the inner loop equilibrium is computed numerically for each candidate

parameter vector considered. This structure makes our estimator broadly analogous to

other estimators developed for discrete static games (e.g., Bajari, Hong, and Ryan (2008)),

non-strategic dynamic games (e.g., Rust (1987)) and certain strategic dynamic games (e.g.,

Goettler and Gordon (2009), and Gallant, Hong, and Khwaja (2010)), in the sense that each

requires the repeated computation of equilibrium.

4.2 Asymptotic properties

The asymptotic properties of the GMM estimator are unclear without further assumptions,

which we develop now:

Assumption A5: A unique Bertrand-Nash equilibrium exists, and the prices that support

it are strictly positive. Formally, for any � ∈ Θ there exists a vector p1 ∈ RJN
+ such that

f(p1; �t; �) = 0. Further, f(p1; �t; �) = f(p2; �t; �) = 0 ↔ p1 = p2.

A5 ensures that the GMM objective function is well-behaved.10 We suspect that

uniqueness alone may suffice if, for instance, the econometrician can compute multiple equi-

libria and select the equilibrium closest to the data (e.g., as in Bisin, Moro, and Topa (2010)).

We defer the evaluation of such possibilities to further research. The following lemma clari-

fies that, given the assumptions of the model, small changes to the parameter vector do not

produce large jumps in the objective function:

Lemma 1: The function S(H(�; �t)) is continuously differentiable over Θ.

Proof. See appendix A.

10Recent theoretical contributions demonstrate that A5 holds for two special cases of our model: nested
logit demand, convex marginal costs, and single-plant firms (Mizuno 2003), and logit demand, sufficiently
increasing marginal costs, and multi-plant firms (Konovalov and Sándor 2010). The assumption is not
satisfied generally (e.g., Caplin and Nalebuff (1991)).

13



Assumption A6: The parameter vector �0 is globally identified in Θ. Formally, E[pd
t −

S(H(�; �t))|�t] = 0 ↔ � = �0:

A6 could be violated even if parameters of the model would be globally identified given

disaggregate data (i.e., even if E[p�
t − H(�; �t)|�t] = 0 ↔ � = �0). Such a scenario may

be more likely when aggregation is particularly coarse. Empirically, it may be possible to

evaluate (imperfectly) the potential for this sort of aggregation problem using artificial data

experiments, and we develop one such test in our application.

The asymptotic properties of the GMM estimator follow directly from A1-A6 and the

other assumptions placed on the data generating process:

Theorem 1: Under A1-A6 and certain regularity conditions enumerated in the appendix,

i) �̂ →p �0 and

ii)
√

T (�̂ − �0) →d N(0; V);

where V = (G′
0C0G0)−1G′

0C0Λ0C0G0(G′
0C0G0)−1 and G0 ≡ −E[@S(H(�; �t))=@�′].

Proof. See appendix A.

4.3 Incorporating non-price moments

The estimation strategy can be extended to incorporate observations on non-price moments,

such as aggregate production or aggregate consumption, that are often available to the

econometrician. We focus on production data for expositional brevity; the other endogenous

data can be incorporated analogously. We assume the data are generated by:

q�
t = q(H(�0; �t); �t; �0)) +



The GMM estimate that incorporates these data is:

�̂ ∗ = arg min
�∈Θ

1

T

T∑
t=1

[
pd

t − S(H(�; �t))

qd
t − R(q(H(�; �t); �t; �))

]′

D−1
T

[
pd

t − S(H(�; �t))

qd
t − R(q(H(�; �t); �t; �))

]
; (15)

where DT is some positive definite matrix, and the relevant contemporaneous variance matrix

is Λ∗
0(�0) ≡ E[S(�t) R(�∗t )|�t]E[S(�t) R(�∗t )|�t]

′. Under A5 and an appropriately modified A6,

Theorem 1 extends and the estimate is consistent and asymptotically normal.

5 The Portland Cement Industry

5.1 The product

Portland cement is a finely ground dust that forms concrete when mixed with water and

coarse aggregates such as sand and stone. Concrete, in turn, is an essential input to many

construction and transportation projects because its local availability and lower maintenance

costs make it more economical than substitutes such as steel, asphalt, and lumber (Van Oss

and Padovani (2002)). The producers of portland cement adhere to strict industry stan-

dards that govern the production process. Aside from geographic considerations, product

differentiation in the industry is minimal.11

Producers negotiate private contracts with their customers, predominately ready-mix

concrete firms and large construction firms. Most contracts specify a mill (or “free-on-

board”) price for portland cement at the location of production. Customers are responsible

for door-to-door transportation, which is an important consideration because portland ce-

ment is inexpensive relative to its weight.12 This fact is well understood in the academic

literature. For example, Scherer et al (1975) estimates that transportation would account for

roughly one-third of total customer expenditures on a hypothetical 350-mile route between

Chicago and Cleveland, and a 1977 Census Bureau study reports that more than 80 percent

is transported within 200 miles.13 More recently, Salvo (2010) presents evidence consistent

with the importance of transportation costs in the Brazilian portland cement industry.

11The standards are maintained by the the American Society for Testing and Materials Specification for
Portland Cement, and exist to protect the quality and reliability of construction materials.

12The bulk of portland cement is moved by truck, though some is sent by train or barge to distribution
terminals and only then trucked to customers.

13Scherer et al (1975) examined more than 100 commodities and determined that the transportation costs
of portland cement were second only to those of industrial gases. Other commodities identified as having
particularly high transportation costs include concrete, petroleum refining, alkalies/chlorine, and gypsum.
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Some details of the production process motivate the marginal cost specification we

introduce below. Cement plants are typically adjacent to a limestone quarry. The limestone

is fed into coal-fired rotary kilns that reach peak temperatures of 1400-1450◦ Celsius. The

output of the kilns – clinker – is cooled, mixed with a small amount of gypsum, and ground

in electricity-powered mills to form portland cement. Kilns operate at peak capacity with

the exception of an annual maintenance period. When demand is particularly strong, man-

agers sometimes forego maintenance at the risk of breakdowns and kiln damage. Consistent

with these stylized facts, a recent report prepared for the Environmental Protection Agency

identifies five main variable input costs of production: raw materials, coal, electricity, labor,

and kiln maintenance (EPA (2009)).

5.2 The geographic space

We focus on California, Arizona, and Nevada over the period 1983-2003. We refer to these

three states as the “U.S. Southwest” for expositional convenience. Figure 2 maps the ge-

ographic configuration of the industry in the U.S. Southwest circa 2003. Most plants are

located along an interstate highway, nearby one or more population centers. Some firms

own multiple plants but ownership is not particularly concentrated – the capacity-based

Herfindahl-Hirschman Index (HHI) of 1260 is well below the threshold level that defines

highly concentrated markets in the 1992 Merger Guidelines. The figure also plots the four

customs offices through which foreign imports enters the region – San Francisco, Los Ange-

les, San Diego, and Nogales. Most cement imported into the region is produced by large,



Figure 2: Portland Cement Production Capacity in the U.S. Southwest circa 2003.

imports. The similarity of the two imports measures we plot in Figure 3 – actual foreign

imports and consumption minus production (“apparent imports”) – reveals that net trade

flows between the U.S. Southwest and other domestic regions are negligible. Other statistics

published by the USGS are strongly suggestive that gross trade flows are also negligible.

For instance, more than 98 percent of cement produced in southern California was shipped

within the U.S. Southwest over 1990-1999, and more than 99 percent of cement produced in

California was shipped within the region over 2000-2003. Outflows from Arizona and Nevada

are unlikely because consumption routinely exceeds production in those states. And since

net trade-flows between the U.S. Southwest and other domestic regions are insubstantial,

these data points also imply that gross domestic inflows must also be insubstantial.

5.3 Data

We collect our endogenous data from the Minerals Yearbook, an annual publication of the

U.S. Geological Survey (USGS). The Minerals Yearbook is based on an annual census of

cement plants that collects detailed information on consumption, production, and mill prices.
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Figure 3: Consumption, Production, and Imports of Portland Cement. Apparent imports are defined as
consumption minus production. Observed imports are total foreign imports shipped into San Francisco, Los
Angeles, San Diego, and Nogales.

Census response rates are typically well over 90 percent, and the USGS staff imputes missing

values for non-respondents based on historical and cross-sectional information.15 The USGS

aggregates the census data to the “regional” level before their publication in the Minerals

Yearbook in order to protect the confidentiality of survey respondents. We observe the

following endogenous data:

• Average mill prices (weighted by production) charged by plants in each of three regions:

Northern California, Southern California, and a single Arizona-Nevada region.

• Total production by plants in the same three regions.

• Consumption in each of four regions: Northern California, Southern California, Ari-

zona, and Nevada.

We also rely on the Minerals Yearbook for information on the price and quantity of portland

cement that is imported into the U.S. Southwest.

We make use of more limited data on cross-region shipments from the California Let-

ter, a second annual publication of the USGS. The level of aggregation varies over the

15The quality of the census has long generated interest among researchers. Other academic studies that
feature USGS data include McBride (1983), Rosenbaum and Reading (1988), Jans and Rosenbaum (1997),
Syverson and Hortaçsu (2007), and Ryan (2009).
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We augment the theoretical model by letting domestic plants compete against a com-

petitive fringe of foreign importers, which we denote as “plant” J + 1. We place the fringe

in geographic space at the four customs offices of the U.S. Southwest. Consumers pay the

door-to-door cost of transportation from these customs offices. We rule out spatial price dis-

crimination on the part of the fringe, consistent with perfect competition among importers,

and assume that the import price is set exogenously (e.g., based on the marginal costs of the

importers or other considerations). Thus, the supply specification is capable of generating

the stylized fact that foreign importers provide substantial quantities of portland cement to

the U.S. Southwest when demand is strong.

6.1.2 Demand

We express the indirect utility that consumers i receives from domestic plant j as follows:

uijt = �c + �ppjnt + �dMILESjn ∗ DIESELt + �∗
ijt; (17)

where pjn is the mill price per metric tonne, MILESjn is the miles (in thousands) between

the plant and the centroid of the consumer’s area and DIESELt is a diesel price index that

equals one in the year 2000. Hence, transportation costs increase linearly in distance and

fuel costs, and the combination �d=�p is the cost per thousand tonne-miles given diesel prices

at the 2000 level. We express the indirect utility received from the foreign importers as:

ui;J+1;t = �c + �i + �ppJ+1;t + �dMILESJ+1;n ∗ DIESELt + �∗
i;J+1;t; (18)

where MILESJ+1;n is the miles (in thousands) between the centroid of the consumer’s area

and the nearest customs office. The import-specific intercept is needed because the USGS

data on import prices exclude duties. To be clear, the domestic prices are not observed

in the data and must be computed as the solution to equation (6), given import prices

that are exogenously-determined, non-discriminatory, and observed in the data. Finally, we

normalize the mean value of the outside good to zero, so that ui0t = �∗
i0t.

We assume that the distributions of the composite error terms (�∗
ijt) generate a nested

logit demand system in which the inside options (the domestic plants and the foreign imports)

are in a different nest than the outside option. That is, we assume the composite error terms

have i.i.d. extreme value distributions and define a parameter � that characterizes the degree

to which valuations of the inside options are correlated across consumers (e.g., as in Cardell



collapses to a standard logit in the latter case. The demand parameters to be estimated are

(



To perform the normalization, we regress regional portland cement consumption on

the demand predictors (aggregated to the regional level), impute predicted consumption at

the county level based on the estimated relationships, and then scale predicted consumption

by a constant of proportionality to obtain potential demand.19 The results indicate that

potential demand is concentrated in a small number of counties. In 2003, the largest 20

counties account for 90 percent of potential demand, the largest 10 counties account for

65 percent of potential demand, and the largest two counties – Maricopa County and Los

Angeles County – together account for nearly 25 percent of potential demand. In the time-

series, potential demand more than doubles over 1983-2003, due to greater activity in the

construction sector and the onset of the housing bubble.

6.2 Estimation

We use a large-scale nonlinear equation solver developed in La Cruz, Mart́ınez, and Ray-

dan (2006) to compute equilibrium. The equation solver employs a quasi-Newton method

and exploits simple derivative-free approximations to the Jacobian matrix; it converges

more quickly than other algorithms and does not sacrifice precision. We define a numer-

ical Bertrand-Nash equilibrium as a price vector for which 1
JtN

∥ f(p ; �t; �) ∥< �, where ∥ · ∥
denotes the Euclidean norm operator. The vector that defines numerical equilibrium given

the 2003 data has 14 × 90 = 1; 260 elements.20

We construct regional-level metrics based on the computed numerical equilibrium to

compare the model predictions against the data. For notational convenience, we denote the

elements of the equilibrium price vector as as p̃jnt(�; �t), and the corresponding quantities as

q̃jnt(�; �t). We also define the sets ℵr and |r as the counties and plants, respectively, located

19The regression of regional portland cement consumption on the demand predictors yields an R2 of
0.9786, which foreshadows an inelastic estimate of aggregate demand. Additional predictors, such as land
area, population, and percent change in gross domestic product, contribute little additional explanatory
power. We use a constant of proportionality of 1.4, which is sufficient to ensure that potential demand
exceeds observed consumption in each region-year observation.
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in region r. Then the aggregated regional-level metrics take the form:

p̃rt(�; �t) =
∑
j∈|r



using the weighting matrix Λ̂ ⊗ I: We compute standard errors that are robust to both

heteroscedasticity and arbitrary correlations among the error terms of each period, using the

methods of Hansen (1982) and Newey and McFadden (1994).22

6.3 Identification

The use of aggregated data precludes point identification if multiple candidate parame-

ters produce identical aggregate predictions despite having distinct disaggregate predictions.

(This would violate A6.) To check for aggregation problems, we pair a vector of “true”

parameters with 40 randomly-drawn sets of exogenous data. Both the parameters and the

data are chosen to mimic our empirical application. For each of set of exogenous data, we

compute equilibrium, generate the relevant aggregated data, and estimate using GMM. We

argue that the model is reasonably identified if the GMM estimates are close to the true

parameters.23

Table 1 shows the results of the artificial data experiment. Interpretation is complicated

somewhat because we use non-linear transformations to constrain the some of coefficients

(e.g., �p < 0), and we defer details on these transformations to Appendix C. Nonetheless, it

is clear that the means of the estimated coefficients are close to transformed true parameters.

The means of the price and distance coefficients, which are particularly relevant for spatial

models, are within 6 percent and 11 percent of the truth, respectively. The root mean-

squared errors tend to be between 0.45 and 0.66 – the two exceptions that generate higher

mean-squared errors are the import dummy and the over-utilization cost, which appear to

be less well identified.

22Estimation of the contemporaneous variance matrix is complicated by the fact that we observe prices,
production, and consumption over 1983-2003 but cross-region shipments over 1990-2003. We use meth-
ods developed in Srivastava and Zaatar (1973) and Hwang (1990) to account for the unequal numbers of
observations.

23The exogenous data includes the plant capacities, the potential demand of counties, the diesel price, the
import price, and two cost shifters. We randomly draw capacity and potential demand from the data (with
replacement), and we draw the remaining data from normal distributions. Specifically, we use the following
distributions: diesel price ∼ N(1, 0.28), import price ∼ N(50, 9), cost shifter 1 ∼ N(60, 15), and cost shifter
2 ∼ N(9, 2). We redraw data that are below zero and data that lead the estimator to nonsensical areas of
parameter space. Throughout, we hold plant and county locations fixed to maintain tractability, and rely
on the random draws of capacity, potential demand, and diesel prices to create variation in the distances
between production capacity and consumers. Each artificial data set includes 21 draws on the exogenous
data, with each draw representing a single time-series observation.
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Table 1: Artificial Data Test for Identification

Variable Parameter Truth (�) Transformed (�̃) Mean Est RMSE

Demand
Cement Price �p -0.07 -2.66 -2.51 0.66
Miles×Diesel Price �d -25.00 3.22 2.86 0.59
Import Dummy �i -4.00 -4.00 -6.07 1.23
Intercept �c 2.00 2.00 1.11 0.51
Inclusive Value � 0.09 -2.31 -1.73 0.54

Marginal Costs
Cost Shifter 1 �1 0.70 -0.36 -0.88 0.51
Cost Shifter 2 �2 3.00 1.10 0.54 0.45
Utilization Threshold � 0.90 2.19 1.71 0.59
Over-Utilization Cost 
 300.00 5.70 6.14 1.05

Results of GMM estimation on 40 data sets that are randomly drawn based on the “true” parame-
ters listed. The parameters are transformed prior to estimation to place constraints on the parameter
signs/magnitudes (see Appendix C). Mean Est and RMSE are the mean of the estimated (transformed)
parameters and the root mean-squared error, respectively.

6.4 Multiple equilibria

We search for only a single equilibria in the inner loop, and problems may arise if multiple

equilibria exist (this would violate A5). To provide some reassurance that the estimation

procedure is reasonable, we conduct a Monte Carlo experiment and search for the existence of

multiple equilibria. In particular, we compute equilibrium at eleven different starting points

for thousands of randomly-drawn candidate parameter vectors. We then evaluate whether,

for each given candidate parameter vector, the computed equilibrium prices are sensitive

to the starting points.24 More precisely, for each candidate parameter vector, we calculate

the standard deviation of each equilibrium price across the eleven starting points. (So

there are 1,260 standard deviations for a typical equilibrium price vector of 1,260 plant-area

elements.) The results indicate that the maximum standard deviation, over all candidate

24We consider 300 parameter vectors for each of the 21 years in the sample, for a total of 6,300 candidate



parameter vectors and all plant-area prices, is zero to computer precision. Thus, the Monte

Carlo experiment finds no evidence of multiple equilibria. This may be unsurprising because,

theoretically, uniqueness is ensured for two close cousins of our model: nested logit demand,

convex marginal costs, and single-plant firms (Mizuno 2003), and logit demand, sufficiently

increasing marginal costs, and multi-plant firms (Konovalov and Sándor 2010).

6.5 Key empirical relationships

Although the estimation routine relies on strong functional form assumptions on demand

and marginal costs, it is nonetheless possible to visualize the key empirical relationships that

drive the parameter estimates. We explore these relationships in Figure 4.

On the demand side, the price coefficient is primarily determined by the relationship

between the consumption and price moments. In panel A, we plot cement prices and the ratio

of consumption to potential demand (“market coverage”) over the sample period. There is

weak negative correlation, consistent with downward-sloping but inelastic aggregate demand.

Next, the distance coefficient is primarily determined by (1) the cross-region shipments

moment, and (2) the relationship between the consumption and production moments. We

plot the gap between production and consumption (“excess production”) for each region in

panel B. In many years, excess production is positive in Southern California and negative

elsewhere, consistent with inter-regional trade flows. The magnitude of these implied trade

flows drives the distance coefficient. Interestingly, the implied trade flows are higher later in

the sample, when the diesel fuel is less expensive.

On the supply side, the parameters on the marginal cost shifters are primarily deter-

mined by the price moments. In panel C, we plot the coal price, the electricity price, the

durable-goods manufacturing wage, and the crushed stone price for California. Coal and

electricity prices are highly correlated with the cement price (e.g., see panel A), consistent

with a strong influence on marginal costs; inter-regional variation in input prices helps dis-

entangle the two effects. It is less clear that wages and crushed stone prices are positively

correlated with cement prices. Finally, the utilization parameters are primarily determined

by (1) the relationship between the production moments (which determine utilization) and

the consumption moments, and (2) the relationship between the production moments and

the price moments. We explore the second source of identification in panel D, which shows

cement prices and industry-wide utilization over the sample period. The two metrics are

negatively correlated over 1983-1987 and positively correlated over 1988-2003.

26



40

60

80

100

120

D
ol

la
rs

/P
er

ce
nt

 (
S

ee
 N

ot
e)

1983 1988 1993 1998 2003

Price Coverage

Panel A: Market Coverage

Figure 4: Empirical Relationships in the U.S. Southwest. Panel A plots average cement prices and market
coverage. Prices are in dollars per metric tonne and market coverage is defined as the ratio of consumption
to potential demand (times 100). Panel B plots excess production in each region, which we define as the gap
between between production and consumption. Excess production is in millions of metric tonnes. Panel C
plots average coal prices, electricity prices, durable-goods manufacturing wages, and crushed stone prices in
California. For comparability, each time-series is converted to an index that equals one in 2000. Panel D
plots the average cement price and industry-wide utilization (times 100).

7 Empirical Results

7.1 Demand estimates and transportation costs

Table 2 presents the parameter estimates of the GMM procedure. The price and distance

coefficients are the two primary objects of interest on the demand side; both are negative and

precisely estimated.25



Table 2: Estimation Results

Variable Parameter Estimate St. Error

Demand
Cement Price



Figure 5: Equilibrium Prices and Market Shares for the Clarksdale Plant in 2003. The Clarksdale plant is
marked with a star, and other plants are marked with circles.

Firms appear to exercise some degree of localized market power. To illustrate, we

map the prices and market shares of the Clarksdale plant that correspond to numerical

equilibrium in Figure 5. We mark the location of the Clarksdale plant with a star, and mark

other plants with circles. As shown, the Clarksdale plant captures more than 40 percent

of the market in the central and northeastern counties of Arizona. It charges consumers

in these counties its highest prices, typically $80 per metric tonne or more. Both market

shares and prices are lower in more distant counties, and in many counties the plant captures

less than one percent of demand despite steep discounts. The locations of competitors also

influence market share and prices, though these effects are more difficult to discern.



separating the county from its the closest alternative is associated with prices and market

shares that are 0.7 percent and 11 percent lower, respectively. Each of these patterns is

statistically significant at the one percent level.28

7.2 Marginal cost estimates

We estimate marginal costs to be $69.40 in the mean plant-year (weighted by production). Of

these marginal costs, $60.50 is attributable to costs related to coal, electricity, labor and raw

materials, and the remaining $8.90 is attributable to high utilization rates. Integrating the

marginal cost function over the levels of production that arise in numerical equilibrium yields

an average variable cost of $51 million. Virtually all of these variable costs – 98.5 percent – are



due to measurement error in the data.31 Alternatively, they may be induced by the implicit

assumption that plant productivity is fixed over the sample period.

7.3 Regression fits

One measure of an econometric model’s viability is in its ability to fit the data.32 In Figure 6,

we plot observed consumption against predicted consumption (panel A), observed production

against predicted production (panel B), and observed prices against predicted prices (panel

C). Univariate regressions of the data on the predictions indicate that the model explains

93 percent of the variation in regional consumption, 94 percent of the variation in regional

production, and 82 percent of the variation in regional prices. Thus, the model performs

reasonably well in accounting for the variation in the endogenous data.

It is also telling to examine the model’s out-of-sample predictions. In panel D, we plot

observations on cross-region shipments against the corresponding model predictions. We use

14 of these observations in the estimation routine – the shipments from plants in California

to consumers in northern California over 1990-2003 – but the remaining 82 data points

are withheld from the estimation procedure and do not influence the estimated parameters.

Even so, the model explains 98 percent of the variation in these data.

The quality of these fits is underscored by the rich time-series variation in the data

due to macro-economic fluctuations. To illustrate, we aggregate the data and the model

predictions across regions, and plot the resulting time-series in Figure 7. Panel A shows

consumption, panel B shows production, panel C shows imports, and panel D shows average

prices (imports are defined as production minus consumption). In each case, the model

predictions mimic the inter-temporal patterns observed in the data. Univariate regressions

of the data on the predictions explain 96 percent of the variation total consumption, 75

percent of the variation in total production, 76 percent of the variation in imports, and 91

percent of the variation in average prices.33

31In particular, the coal prices in the data are free-on-board and do not reflect any transportation costs
paid by cement plants; cement plants may negotiate individual contracts with electrical utilities that are
not reflected in the data; the wages of cement workers need not track the average wages of durable-goods
manufacturing employees; and cement plants typically use limestone from a quarry adjacent to the plant, so
the crushed stone price may not proxy the cost of limestone acquisition (i.e., the quarry production costs).

32We are unaware of any statistical specification tests that are suitable for GMM with optimal instruments,
which is exactly identified by construction.
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Figure 6: GMM Estimation Fits for Regional Metrics. Consumption, production, and cross-region ship-
ments are in millions of metric tonnes. Prices are constructed as a weighted-average of plants in the region,
and are reported as dollars per metric tonne. The lines of best fit and the reported R2 values are based on
univariate OLS regressions.

7.4 An application to competition policy

The model and estimator may prove useful for a variety of policy endeavors. One potential

application is merger simulation, an important tool for competition policy. We use counter-

factual simulations to evaluate a hypothetical merger between Calmat and Gifford-Hill in

1986, when the firms together operated six plants and accounted for 43 percent of industry

capacity in the U.S. Southwest.34

34We follow standard practice to perform the counterfactuals. We define an ownership matrix Ωpost(P)
that reflects the post-merger structure of the industry. We then compute the equilibrium post-merger price
vector as the solution to Equation 6, substituting Ωpost(P) for Ω(P). Following McFadden (1981) and Small
and Rosen (1981), the change in consumer surplus due to the merger is:

∆CS =
N∑

n=1

ln(1 + exp(βc + λIprent )) − ln(1 + exp(βc + λIpostnt ))

βp
Mn,

where Ipren is the inclusive value of the inside goods calculated using equilibrium pre-merger prices, Ipostn is
the inclusive value calculated using equilibrium post-merger prices.
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Figure 7: GMM Estimation Fits for Aggregate Metrics. The solid lines plot data and the dashed lines plot
predictions. Consumption, production, and imports are in millions of metric tonnes. Imports are defined
as production minus consumption. Prices are constructed as a weighted-average of the plant-county prices
and are reported in dollars per metric tonne. The R2 values are calculated from univariate regressions of
the observed metric on the predicted metric.

We map the distribution of consumer harm over the U.S. Southwest in Figure 8. In

panel A we focus on the effects of the merger, absent any divestitures. The total loss of

consumer surplus is $1.4 million which is small relative to pre-merger consumer surplus of

$239 million. Consumer harm is concentrated in the counties surrounding Los Angeles and

Phoenix. Indeed, Maricopa County and Los Angeles County alone account for 60 percent

of consumer harm and 10 counties account for more than 90 percent of the harm. We focus

on potential remedies in panel B. We find that it is possible to eliminate 56 percent of the

harm through the divestiture of a single plant. The divestiture of either the “Gifford-Hill

2” plant or the “Calmat 2” plant accomplishes this. As shown, however, these divestitures

mitigates consumer harm in Southern California but do little to reduce harm in Maricopa



Figure 8: Loss of Consumer Surplus Due to a Hypothetical Merger between Calmat and Gifford-Hill

7.5 Comparison to market delineation

In the introduction, we argue that the market delineation model imposes awkward theoret-

ical assumptions. We now contrast some of our results to those of Ryan (2009), a recent

paper that uses market delineation in a study of the portland cement industry. In partic-

ular, we point out that our approach generates distinctly different estimates of aggregate

elasticity than does the market delineation approach. The discrepancy is consistent with the

notion that our estimation strategy may sometimes provide more reasonable results than

conventional approaches, and that these differences can be sizeable.35

Ryan makes the common assumptions that demand has constant elasticity and supply

is Cournot within each market. He estimates the aggregate elasticity to be −2:96, which

is quite different than our estimate of −0:16. The difference is entirely due to specification

35The discrepancy does not diminish the substantial contribution of Ryan (2009), which estimates an in-
novative dynamic discrete choice game and focuses primarily on the dynamic parameters; market delineation
is used simply to determine the payoffs at different realizations of the state space.
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choices – the constant elasticity demand system produces an aggregate elasticity of −0:15

once housing permits are included as a control.36 However, Ryan cannot use the inelastic

estimate because, within the context of Cournot competition, it would imply that the firm

elasticities are small to be consistent with profit maximization. This occurs because the

Cournot model restricts each firm elasticity to be linearly related to the aggregate elasticity

according the relationship ej = e=sj, where ej, e, and sj denote the firm elasticity, the

aggregate elasticity, and the firm market shares, respectively. Further, Ryan cannot use the

nested logit system to divorce the firm elasticities from the aggregate elasticity (as we do)

because because logit models assume differentiated products whereas Cournot supply models

assume homogenous products. Our takeaway is that our econometric strategy can lead to

improved estimates by connecting the data to more realistic economic models.

8 Conclusion

The literature of the “new empirical industrial organization” focuses on the structural es-

timation of competition models and the recovery of the underlying parameters that guide

firm and consumer decisions. Econometric innovations and greater computer power have im-

proved our ability to link empirical correlations with sensible theoretical models of behavior.

One area of particular interest has been the estimation of product differentiation models, as

in Berry, Levinsohn, and Pakes (1995) and Nevo (2001). Yet geographic considerations –

often critical drivers of differentiation – have received relatively little attention.

In providing an estimator for economic models of spatial price differentiation and spa-

tial price discrimination, we hope to extend the reach of researchers to a number of questions

that have long been emphasized in the theoretical literature. For instance, researchers could

study the relationship between transportation costs and the intensity of competition, the

welfare effects of spatial price discrimination, or the proper construction of antitrust mar-

kets. Though our empirical application is static, the estimator also could be used to define



References

Bajari, P., H. Hong, and S. Ryan (2008). Identification and estimation of discrete games

of complete information. Working paper, Duke University.

Berry, S., J. Levinsohn, and A. Pakes (1995, July). Automobile prices in market equilib-

rium. Econometrica, 841–890.

Bisin, A., A. Moro, and G. Topa (2010). The empirical content of models with multiple

equilibria in economies with social interactions. Mimeo.

Cardell, S. N. (1997). Variance components structures for the extreme value and logis-

tic distributions with applications to models of heterogeneity. Journal of Economic

Theory 13, 185–213.

Collard-Wexler, A. (2009). Productivity dispersion and plant selection in the ready-mix

concrete industry. Mimeo.

d’Aspremont, C., J. Gabszewicz, and J.-F. Thisse (1979). On Hotelling’s “Stability in

Competion”. Econometrica 47, 1145–1150.

Davis, P. (2006). Spatial competition in retail markets: Movie theaters. The RAND Jour-

nal of Economics 37, 964–982.

Dunne, T., S. Klimek, and J. A. Schmitz (2009). Does foreign competition spur produc-

tivity? Evidence from post-WWII U.S. cement manufacturing. Federal Reserve Bank

of Minneapolis Staff Report .

Economides, N. (1989). Stability in competition. Journal of Economic Theory 47, 178–194.

EPA (2009). Regulatory Impact Analysis: National Emission Standards for Hazardous

Air Pollutants from the Portland Cement Manufacturing Industry. Prepared by RTI

International.



Hotelling, H. (1929). Stability in competition. Economic Journal 39, 41–57.

Hwang, H.-s. (1990). Estimation of a linear SUR model with unequal numbers of obser-

vations. Review of Economics and Statistics 72.

Jans, I. and D. Rosenbaum (1997, May). Multimarket contact and pricing: Evidence

from the U.S. cement industry. International Journal of Industrial Organization 15,

391–412.

La Cruz, W., J. Mart́ınez, and M. Raydan (2006). Spectral residual method without gra-

dient information for solving large-scale nonlinear systems of equations. Mathematics

of Computation 75, 1429–1448.



Rust, J. (1987). Optimal replacement of gmc bus engines: An empirical model of harold

zurchner. Econometrica 55, 993–1033.

Ryan, S. (2009). The costs of environmental regulation in a concentrated industry. Mimeo.

Salop, S. (1979). Monopolistic competition with outside goods. Bell Journal of Eco-

nomics 10, 141–156.

Salvo, A. (2008). Inferring market power under the threat of entry: The case of the

Brazilian cement industry. Mimeo.

Salvo, A. (2010). Trade flows in a spatial oligolopy: Gravity fits well, but what does it

explain? Canadian Journal of Economics 43, 63–96.

Seim, K. (2006). An empirical model of firm entry with endogenous product-type choices.

The RAND Journal of Economics 37, 619–640.

Small, K. and H. Rosen (1981). Applied welfare economics with discrete choice methods.

Econometrica 49, 105–130.

Srivastava, J. and M. K. Zaatar (1973). A Monte Carlo comparison of four estimators of

the dispersion matrix of a bivariate normal population, using incomplete data. Journal

of the American Statistical Association 68, 180–183.

Syverson, C. (2004, December). Market structure and productivity: A concrete example.

Journal of Political Economy 112, 1181–1222.



A Proofs

Proof of Lemma 1: The proof is by contradiction. Suppose that S(H(�)) is not continu-

ously differentiable at some parameter vector �1 ∈ Θ, i.e., that S(H(�))=@�′ is discontinuous

at �1. Then, by the linearity of S and the definition of discontinuity,

lim
�∗→�−1

@H(�)

@�′

∣∣∣∣
�=�∗

̸= lim
�∗→�+1

@H(�)

@�′

∣∣∣∣
�=�∗

However, the function f(p; �) is continuously differentiable in p and � by the assumptions

placed on q(p; �) and c(p; �). Thus, for the arbitrary price vector H(�), it follows that

@f(H(�); �)=@�′ is continuous, i.e.

lim
�∗→�−1

@f(p; �)

@H(�)

@H(�)

@�′

∣∣∣∣
�=�∗

+
@f(p; �)

@�′

∣∣∣∣
�=�∗

= lim
�∗→�+1

@f(p; �)

@H(�)

@H(�)

@�′

∣∣∣∣
�=�∗

+
@f(p; �)

@�′

∣∣∣∣
�=�∗

;

and it is straight-forward to show (e.g., via log transformation) that this implies

lim
�∗→�−1

@H(�)

@�′

∣∣∣∣
�=�∗

= lim
�∗→�+1

@H(�)

@�′

∣∣∣∣
�=�∗

:

�

Proof of Theorem 1: The needed regularity conditions are:

i) 1
T

∑T
t=1[pd

t − S(H̃(zt; �))] →p E[pd
t − S(H̃(zt; �))]dmplin /F15 11.955 Tf 8.08 3-6.1[(�)]TJ /F11 7.6955 Tf 9.1 0 Td[(=@)-J /F21 11.955 Tf 11.29 0 Td[(�)]TJ /F6 11.955 Tf 10.47 0 6d[(,)-292-367.4890 Td.53-3.1i)

∑T
t=1



Table 3: Consumption, Production, and Prices

Description Mean Std Min Max

Consumption
Northern California 3,513 718 2,366 4,706
Southern California 6,464 1,324 4,016 8,574
Arizona 2,353 650 1,492 3,608
Nevada 1,289 563 416 2,206

Production
Northern California 2,548 230 1,927 2,894
Southern California 6,316 860 4,886 8,437
Arizona-Nevada 1,669 287 1050 2,337

Domestic Prices
Northern California 85.81 11.71 67.43 108.68
Southern California 82.81 16.39 62.21 114.64
Arizona-Nevada 92.92 14.24 75.06 124.60

Import Prices [excludes duties and grinding costs]
U.S. Southwest 50.78 9.30 39.39 79.32

Statistics are based on observations at the region-year level over
the period 1983-2003. Production and consumption are in thou-
sands of metric tonnes. Prices are per metric tonne, in real
2000 dollars. Import prices exclude duties. The region labeled
“Arizona-Nevada” incorporates information from Nevada plants
only over 1983-1991.

estimation. Second, Southern California is larger than the other regions, whether measured

by consumption or production. Third, consumption exceeds production in Northern Cali-

fornia, Arizona, and Nevada; these shortfalls must be countered by cross-region shipments

and/or imports. The observation that plants in these regions charge higher prices is consis-

tent with transportation costs providing some degree of local market power. Finally, imports

are less expensive than domestically produced portland cement. This discrepancy exists for

two reasons: First, imports typically come in the form of clinker, which observes water from

the air more slowly than cement. The clinker is ground into cement only after it clears

customs. The import price does not include the grinding cost. Second, the import price

does not include tariffs and duties, which are substantial. We include the import dummy in

the demand specification to adjust for these factors.
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librium. We use the following constraints: the price and distance coefficients (�1 and �2)



over 1983-1987, and we adjust the USGS production data to remove the influence of the

plant over 1988-2003 by scaling the data downward, proportional to plant grinding capac-

ities. Since the Riverside plant accounts for 7 percent of grinding capacity in Southern

California in 1988, so we scale the production data for that region by 0.93.

We exclude one plant in Riverside that produces white portland cement. White cement

takes the color of dyes and is used for decorative structures. Production requires kiln temper-

atures that are roughly 50◦C hotter than would be needed for the production of grey cement.

The resulting cost differential makes white cement a poor substitute for grey cement.

The PCA reports that the California Cement Company idled one of two kilns at its

Colton plant over 1992-1993 and three of four kilns at its Rillito plant over 1992-1995, and

that the Calaveras Cement Company idled all kilns at the San Andreas plant following the

plant’s acquisition from Genstar Cement in 1986. We adjust plant capacity accordingly.

We multiply kiln capacity by 1.05 to approximate cement capacity, consistent with the

industry practice of mixing clinker with a small amount of gypsum (typically 3 to 7 percent)

in the grinding mills.

The data on coal and electricity prices from the Energy Information Agency are avail-

able at the state level starting in 1990. Only national-level data are available in earlier

years. We impute state-level data over 1983-1989 by (1) calculating the average discrep-

ancy between each state’s price and the national price over 1990-2000, and (2) adjusting the

national-level data upward or downward, in line with the relevant average discrepancy.
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