
ECONOMIC ANALYSIS GROUP
DISCUSSION PAPER

Approximating the Price E�ects of Mergers:
Numerical Evidence and an Empirical Application

By

Nathan H. Miller, Conor Ryan, Marc Remer and Gloria Sheu*
EAG 12-8 October 2012

EAG Discussion Papers are the primary vehicle used to disseminate research from economists in the
Economic Analysis Group (EAG) of the Antitrust Division. These papers are intended to inform
interested individuals and institutions of EAG's research program and to stimulate comment and
criticism on economic issues related to antitrust policy and regulation. The analysis and conclusions
expressed herein are solely those of the authors and do not represent the views of the United States
Department of Justice.

Information on the EAG research program and discussion paper series may be obtained from Russell
Pittman, Director of Economic Research, Economic Analysis Group, Antitrust Division, U.S. De-
partment of Justice, BICN 10-000, Washington DC 20530, or by e-mail at russell.pittman@usdoj.gov.
Comments on speci�c papers may be addressed directly to the authors at the same mailing address
or at their email address.

Recent EAG Discussion Paper titles are listed at the end of this paper. To obtain a complete list of
titles or to request single copies of individual papers, please write to Janet Ficco at the above mailing
address or at janet.�cco@usdoj.gov. In addition, recent papers are now available on the Department
of Justice website at http://www.usdoj.gov/atr/public/eag/discussion papers.htm. Beginning with
papers issued in 1999, copies of individual papers are also available from the Social Science Research
Network at www.ssrn.com.

*Economic Analysis Group, Antitrust Division, U.S. Department of Justice. Email contacts:
nathan.miller@usdoj.gov, conor.ryan@usdoj.gov, marc.remer@usdoj.gov, gloria.sheu@usdoj.gov. We
thank Sonia Ja�e, Charles Taragin, Glen Weyl, Nathan Wilson and seminar participants at the
U.S. Department of Justice and Michigan State University for valuable comments. The views ex-
pressed herein are entirely those of the authors and should not be purported to reect those of the
U.S. Department of Justice.



Abstract

We analyze the accuracy of �rst order approximation, a method developed theoret-
ically in Ja�e and Weyl (2012) for predicting the price e�ects of mergers, and provide
an empirical application. Approximation is an alternative to the model-based simula-
tions commonly employed in industrial economics. It provides predictions that are free
from functional form assumptions, using data on either cost pass-through or demand



1 Introduction

Horizontal mergers can diminish the incentives of the merging �rms to compete aggressively,

as each merging �rm internalizes the impact of its actions on the pro�ts of the other. The

literature on antitrust economics characterizes this e�ect as arising due to the creation of

opportunity costs; each merging �rm, when making a sale, forgoes with some probability

a sale by the other merging �rm. This interpretation is useful because these opportunity

costs can be measured with data on the consumer substitution patterns and margins that

arise in the pre-merger equilibrium.1 Building on this logic, Ja�e and Weyl (2012) provide

general conditions under which the price e�ects of mergers can be calculated, to a �rst-order

approximation, by multiplying these opportunity costs with an appropriate measure of cost

pass-through. This calculation, hereafter referred to as \approximation," is the subject of

our research.

Approximation provides an alternative to simulation for evaluating counter-factual sce-

narios, both in merger analysis and in industrial economics more broadly. One recognized

limitation of simulation is that structural assumptions typically determine how economic

behavior changes away from the initial equilibrium. In the merger context, research has

shown that simulation can be sensitive to assumptions on the curvature of the consumer de-

mand schedule (Crooke, Froeb, Tschantz, and Werden (1999)). By contrast, approximation

provides robust counter-factual predictions, exploiting data on either cost pass-through or

demand curvature in the neighborhood of the initial equilibrium, and allows researchers to

remain agnostic about the relevant functional forms.2

We make two primary contributions in this paper. First, we use numerical experiments

to assess the accuracy of approximation. The experiments are valuable because the theoret-

ical results of Ja�e and Weyl (2012) demonstrate the precision of approximation only with

1Farrell and Shapiro (2010a) refer to the opportunity costs created by a merger as gross upward pricing
pressure (UPP). The Horizontal Merger Guidelines of the U.S. Department of Justice and the Federal Trade
Commission, as revised in 2010, endorse upward pricing pressure as informative of the likely competitive
e�ects of mergers. See Horizontal Merger Guidelines

H
6.1:

\The value of sales diverted to a product is equal to the number of units diverted to that
product multiplied by the margin between price and incremental cost on that that product. In
some cases, where su�cient information is available, the Agencies assess the value of diverted
sales, which can serve as a diagnostic of the upward pricing pressure.... The Agencies rely much
more on the value of diverted sales than on the level of the HHI for diagnosing unilateral price
e�ects in markets with di�erentiated products."

2The connection between cost pass-through and consumer demand is developed in the recent theoretical
literature (e.g. Ja�e and Weyl (2012), Miller, Remer, and Sheu (2012), Weyl and Fabinger (2012)).



upward pricing pressure that is arbitrarily small and with pro�t functions that are quadratic

in price.3 Accuracy is theoretically ambiguous outside these special cases. While it is rea-

sonable to expect the accuracy of approximation to decrease with the magnitude of upward

pricing pressure and the importance of the higher order properties of demand, it is unclear

how these factors interact and at what rate the precision degrades.

We focus on horizontal mergers in the numerical experiments but note that the logic of

approximation extends to other counter-factual exercises that involve perturbations to �rms'

marginal costs or opportunity costs. Examples include the economic impacts of emissions

trading programs, gasoline taxes, tari�s and duties, and exchange rate uctuations. Since

each deals with fundamentally the same issue { the extent to which �rms transmit cost shocks

to �nal prices { our numerical experiments on mergers likely characterize the accuracy of

approximation more broadly.

Our second primary contribution is an empirical application that demonstrates how

approximation can be applied given scanner data with su�cient price and quantity variation.

The data employed characterize unit sales and average sales prices in a consumer products

industry evaluated in the past by the Antitrust Division of the U.S. Department of Justice.

We use standard econometric techniques to obtain a second-order approximation of the

unknown demand surface in the range of the data, which we interpret as representing the

neighborhood of the pre-merger equilibrium. The results allow us to infer the appropriate

measure of pass-through and apply the approximation to evaluate the likely price e�ects

of a hypothetical merger. This approach is in stark contrast to more conventional demand

estimation, which seeks to obtain the �rst derivatives of demand (i.e., the demand elasticities)

based on functional form assumptions that restrict the second-order properties of demand.

By way of preview, the numerical results characterize the accuracy across a variety

of economic environments, including a range of upward pricing pressure and four demand

systems that commonly are employed in antitrust analysis: logit demand, the almost ideal

demand system (AIDS) of Deaton and Muellbauer (1980), linear demand and log-linear (or

isoelastic) demand. In each case, we compare approximation both to the true price e�ect,

supplied by merger simulation conducted with the correct demand system, and to merger

simulation conducted with an incorrect assumption on demand curvature.

We �nd that approximation provides accurate predictions when the true underlying

demand schedule is linear (where it is exact) or the AIDS. Approximation is relatively less

accurate when the true demand is logit or log-linear. We also �nd that the precision of

3Quadratic pro�t functions arise for �rms with constant marginal costs and facing linear demand.
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cost pass-through or the second-order properties of demand, compare approximation to

merger simulation, and show that rearranging the �rms' �rst order conditions leads to an

alternative formulation of the approximation. In Section 3, we discuss the design of the

numerical experiments and in Section 4 we provide the results. Finally, Section 5 develops

the empirical application and Section 6 concludes.

2 Overview of Merger Approximation

2.1 Derivation and graphical illustration

We focus on models of Bertrand-Nash competition in which �rms face well-behaved, twice-

di�erentiable demand functions.4 Each �rm i produces some subset of the products available

to consumers and sets prices to maximize short-run pro�ts, taking as given the prices of its

competitors. The pro�ts of �rm i have the expression

� i = PT
i Qi (P) � Ci (Qi (P)); (1)

wherePi is a vector of �rm i 's prices,Qi is a vector of �rm i 's sales,P is a vector containing

the prices of every product, andCi is the cost of �rm i . The following �rst order conditions

characterize �rm i 's pro�t-maximizing prices:

f i (P) � �

"
@Qi (P)

@Pi

T
#� 1

Qi (P) � (Pi � MC i ) = 0 ; (2)

where MC i is a vector of �rm i 's marginal costs (i.e.,MC i = @Ci =@Qi ). While �rst order





merger, to a �rst approximation, are given by the vector

� P = �
�

@h(P)
@P

� � 1
�
�
�
�
�
P = P 0

h(P0):

Here the vectorh(P0) is equivalent to net upward pricing pressure becausef (P0) = 0 by

de�nition. The matrix � (@h(P)=@P)� 1 jP = P0 is the opposite inverse Jacobian ofh(P), eval-

uated at pre-merger prices, and captures how net upward pricing pressure is transmitted

to consumers. Ja�e and Weyl (2012) refer to this matrix asmerger pass-through. Con-

sistent with the interpretation of upward pricing pressure as an opportunity cost, merger

pass-through is related closely to the cost pass-through rates that arise in the pre-merger

equilibrium. We explore this connection more deeply in Section 2.2.

To build intuition, we represent a simpli�ed version of the approximation graphically.6

Figure 1 plots a hypothetical functionhi (Pi ; P0
� i ) for the single-product �rm i , holding the

prices of other products �xed at pre-merger equilibrium levels. Thus, the intersection of

hi (Pi ; P0
� i ) with the horizontal axis provides the optimal price of �rm i given that other

prices remain unchanged from the pre-merger equilibrium.7 The dashed line is the tangent

to hi (Pi ; P0
� i ) at the pre-merger price. The post-merger price of �rmi can be approximated

by projecting this tangent to its point of intersection with the horizontal axis, which is

equivalent to applying a single step of Newton's method. In this example, the convexity

of hi (Pi ; P0
� i ) leads the approximation to understate the optimal price of the product given

other prices at pre-merger levels. The convexity or concavity of thehi (Pi ; P0
� i ) depends on

the higher-order properties of demand and, in general, the approximation could understate

or overstate the pro�t-maximizing post-merger prices.

[Figure 1 about here.]

Theorem 1 implies that approximation is precise when upward pricing pressure is ar-

bitrarily small and also with pro�t functions that are quadratic in price (e.g., with linear
6We impose that @h(P)=@Pis diagonal solely for the purpose of the graphical demonstration. The

restriction implies that prices are una�ected by the costs of other products so that, for instance, there is
no strategic complementarity or substitutability as de�ned by Bulow, Geanakoplos, and Klemperer (1985).
Economic theory dictates that the Jacobian ofh(P) is never actually diagonal. Even in the case of log-linear



demand and constant marginal costs). Outside of these special cases, the precision of ap-

proximation is theoretically ambiguous. While the accuracy of the approximation may be

expected to decrease with the magnitude of upward pricing pressure and with the curvature

in h(P), it is unclear how these factors interact and at what rate the precision degrades. The

numerical experiments that we conduct are designed to evaluate the accuracy of approxima-

tion in such settings.

2.2 Obtaining merger pass-through

First order approximation requires knowledge of merger pass-through which, as can be as-

certained from equations 2-4, depends on the �rst and second derivatives of demand.8 The

informational demands of approximation therefore exceed those of merger simulation, which

requires knowledge only of �rst derivatives. In this section, we discuss how knowledge of

merger pass-through can be obtained. We encourage the reader to keep in mind that the re-

sults of our numerical experiments suggest that approximation often retains precision when

knowledge of merger pass-through is imperfect. Further, we develop below that pre-merger

cost pass-through sometimes can serve as a reasonable proxy for merger pass-through.

One approach to obtaining the requisite demand derivatives for merger pass-through is

to estimate them from data. The translog demand model of Christensen, Jorgenson, and Lau

(1975) and the almost ideal demand system (AIDS) of Deaton and Muellbauer (1980) each

have somewhat exible second order properties and, given su�cient data, could be estimated.

Alternatively, models with fully exible �rst and second order properties could be used.

Along these lines, in our empirical application we use scanner data to estimate a system of

equations that provides second-order approximations to demand in the neighborhood of pre-

merger equilibrium. We derive the �rst and second demand derivatives from the regression

coe�cients and apply approximation to evaluate a hypothetical merger.9 The estimation of

demand systems with exible second order properties typically requires data with unusually

rich price variation and is not feasible for many applications.

An alternative approach is to infer merger pass-through from pre-merger cost pass-

through and knowledge of the �rst derivatives of demand. Cost pass-through has been

estimated in the academic literature (e.g., Besanko, Dube, and Gupta (2005)) and in con-

junction with antitrust litigation (e.g., Ashenfelter, Ashmore, Baker, and McKernan (1998)).

The key to this alternative approach is that cost pass-through is tightly linked to demand

8We defer the derivation of merger pass-through to Appendix A.
9See Section 5 for details.
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curvature. Following Ja�e and Weyl (2012), this connection can be derived from the �rst

order conditions of equation 2. Consider the imposition of a per-unit tax on each product,

which serves to perturb marginal costs, and denote the vector of taxest. Since marginal

costs enter quasi-linearly into the �rst order conditions of each �rm with a coe�cient of one,

the post-tax pre-merger �rst order conditions can be written

f (P) + t = 0:

Di�erentiating with respect to t obtains

@P
@t

@f(P)
@P

+ I = 0;

and algebraic manipulations then yield the pre-merger cost pass-through matrix:

� pre �
@P
@t

= �
�

@f(P)
@P

� � 1

: (5)

The Jacobian off (P) depends on the �rst and second derivatives of demand, as is clear from

equation 2.10 Provided that the �rst derivatives are known, numerical optimization can be

used to select second derivatives that rationalize pre-merger cost pass-through, i.e. second

derivatives that minimize the \distance" between the elements in the implied opposite inverse

Jacobian off (P) and the elements in the observed pre-merger cost pass-through matrix.11

These second derivatives can then be used, in conjunction with the �rst derivatives, to

calculate merger pass-through.

Some additional assumptions are necessary. Since the matrices that appear in equation

(5) are of dimensionality N � N , where N is the number of products, the relationship

between pre-merger cost pass-through and the Jacobian off (P) providesN 2 equations with

which to identify unknown second derivatives. An assumption that demand satis�es Slutsky

symmetry is su�cient for identi�cation in the special case of a merger among single product

duopolists.12 In other cases, second derivatives of the form@2Q i
@Pj @Pk

, for i 6= j , i 6= k and

10Equation 5 clari�es the link between pre-merger cost pass-through and merger pass-through: the former
depends on the Jacobian of thef (P) while the latter depends on the Jacobian ofh(P); evaluated at pre-
merger prices in both cases.

11In our numerical experiments, we select the second derivatives to minimize the sum of squared deviations.
12Slutsky symmetry implies @Qi

@Pj
= @Qj

@Pi
and it follows that:

@2Qi

@2Pj
=

@
@Pj

@Qi
@Pj

=
@

@Pj

@Qj
@Pi

=
@2Qj

@Pj @Pi
:

8



j 6= k, are not identi�ed from equation (5) even with Slutsky symmetry. These second

derivatives are plausibly small, however, and it may be reasonable to normalize them to

zero. Alternatively, Ja�e and Weyl (2012) suggest the following \horizontality" assumption

on demand:

Qi (P) =  

 

Pi +
X

j 6= i

� j (Pj )

!

; (6)

for some : R ! R and � :









a clean assessment of the accuracy of approximation because it links the demand derivatives

and cost pass-through that arise in pre-merger equilibrium to the underlying demand system

used to conduct merger simulation.

3.2 Data generating process

3.2.1 Overview

In each experiment, we consider an industry with three single-product �rms and evaluate

merger between the �rst two �rms. We begin with prices, quantities and the �rst �rm's

margin, which is su�cient information to calibrate a logit demand model. Speci�cally, the

market shares of the �rst and second �rms are from a uniform distribution with support

between 5% and 65%. So as not to exceed the size of the market, the second �rm's share

also faces the upper bound of one minus the �rst �rm's share. The third �rm receives the



of non-merging �rms is a second-order consideration in our exercise, taking as given the

upward pricing pressure created by the merger, and for the sake of simplicity we incorporate

only a single non-merging �rm. We note that the calibration process imposes that customer

substitution among the three �rms is proportional to market share for logit demand, the

AIDS, linear demand and log-linear demand in the pre-merger equilibrium; the property is

maintained away from the pre-merger equilibrium only for logit demand.20 The mixed logit

experiments allow us to examine more exible consumer substitution patterns.

3.2.2 Mathematical details

We turn now to the mathematics of the selected demand systems and the calibration process.

We start with the logit demand system, which takes the form

Si =
e(� i � Pi )=�

P
k e(� k � Pk )=�

; (13)

whereSi is the share of �rm i (i.e. Si = Qi =M for market sizeM ). The unknowns include

the J product-speci�c terms (� i ) and a single scaling/price coe�cient (� ). The system is

under-de�ned, which we account for by normalizing the� value for the last product to one.

The implied elasticities evaluated at pre-merger equilibrium are

� jk =

(
� (1 � Sj )=� if j = k

Sk=�



is quantity. The log-linear demand system takes the form

ln(Qi ) = � i +
X

j

� ij ln Pj ; (16)

where � represents the product-speci�c intercepts and� is as de�ned in equation (14). The

AIDS of Deaton and Muellbauer (1980) takes the form

Wi =  i +
X

j

� ij logPj + � i log(X=P � ); (17)

where Wi is an expenditure share (i.e.,Wi = Pi Qi =
P

k PkQk), X is the total expenditure

and P � is a price index given by

log(P � ) =  0 +
X

k

 k log(Pk) +
1
2

X

k

X

l

� kl log(Pk) log(Pl ):

We focus on the special case of� i = 0, consistent with common practice in antitrust appli-

cations (e.g, Epstein and Rubinfeld (1999)). The restriction is equivalent to imposing an

income elasticity of one. While the log-linear and linear demand systems require all the

margins, the restricted AIDS model only requires two. Thus, the margins for the AIDS

model are slightly di�erent than those of the previous three models.

We also generate results for the mixed (or \random coe�cients") logit demand system

that is popular in empirical industrial economics research. We focus on a speci�c case in

which market shares take the form

Si =
Z

e(� i � (1+ �� )Pi )=�

P
k e(� k � (1+ �� )Pk )=�

@F(� );

whereF (� ) is a distribution that we assume to be normal with mean zero and variance one.

We select� based on the already calibrated standard logit model. We select two values of�

for investigation: � = 1=(2� ), which implies that roughly 95% of consumers have downward-

sloping demand, and� = 1=(4� ), which is selected as a halfway point to the standard logit

model. We then we take 1,000 draws from the distribution of� and calibrate the product

speci�c intercepts to match the observed market shares. As in the standard logit model, we

normalize the intercept of the third product to one. The results generated for this particular

speci�cation of the mixed logit model may not generalize to other speci�cation employed in

the empirical literature that feature di�erent or multiple distributions of consumer tastes.
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We nonetheless consider the exercise to have value, insofar as it shows how the accuracy of

approximation can change based on the true underlying preferences of consumers.22

3.3 Summary statistics

Table 1 provides summary statistics on the randomly-generated industries. As shown, the

average market share and margin the �rst �rm are 37% and 46%, respectively. Substantial

variation exists in each. For instance, the �fth and ninety-�fth market share percentiles are

10% and 58%. The market shares and margins of the second �rm are somewhat smaller, due

to the mathematical restriction that the second �rm's share can never exceed one minus the

�rst �rm's share. The margins of �rst �rm corresponds to a pre-merger own-price demand

elasticities of 2.57. Given the market shares, the average implied diversion ratio from �rm



3.4 Research objectives

We develop three main sets of numerical results. The �rst pertains to the accuracy of

approximation when complete information is available either on pre-merger cost pass-through

or on the second derivatives of demand in the neighborhood of pre-merger equilibrium.

For each combination of draws and each demand system, we calculate approximation three

ways: based on the second derivatives of demand, based on pre-merger cost through with

the horizontality assumption, and based on pre-merger cost pass-through setting derivatives

of the form @2Qi =@Pj @Pk equal to zero. The results characterize the performance of the

approximation under the most advantageous of circumstances.

The second main set of results pertains to the accuracy of approximation when incom-

plete information is available on the pre-merger cost pass-through. These results may prove

valuable to researchers and practitioners presented with data that are insu�ciently rich to

identify the full pass-through matrix. We consider two scenarios in which some of elements

of the cost pass-through are known:

� Cost pass-through is available only for the merger �rms.24 To implement approx-

imation, we impute the own-cost pass-through rate of non-merging �rm using the

mean of the own-cost pass-through rates of the merging �rms and impute cross-cost

pass-through rates involving the non-merging �rms using the mean of the cross-cost

pass-through rates of the merging �rms.

� Only own-cost pass-through is available, i.e., the o�-diagonal elements of the cost pass-

through matrix are unknown. To implement approximation, we treat the cross-cost

pass-through terms as equaling zero.

We also consider two scenarios in which only industry cost pass-through rates are available.

Industry pass-through captures the e�ects of a cost shock common to all �rms; from a

mathematical standpoint, the industry pass-through can be calculated by summing across

the rows of the cost pass-through matrix. We implement approximation two ways:

� We calculate the cost pass-through matrix that would arise given linear demand, given

the the �rst derivatives of demand, and then scale the matrix to reproduce industry

cost pass-through. We refer to this as the \adjusted-linear" method.25

24In practice, this scenario could arise when an antitrust authority has superior ability to compel document
and data productions from merging �rms than from non-merging �rms.

25To obtain obtain the cost pass-through matrix, we �rst calculate @f(P)=@Pbased on the equation in
Appendix A, making use of the known �rst derivatives and presumption that the second derivatives equal
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� We set the own-cost pass-through rates equal to the industry pass-through rates and set

the cross-cross pass-through rates to zero. This treatment is consistent with log-linear

demand and we refer to it at the \log-linear" method.

Finally, we provide a number of extensions. These include (i) an examination of how

well the approximation performs with mixed logit demand; (ii) an analysis of approximation

for small price changes; (iii) an examination of \simple approximation" that uses pre-merger

cost pass-through in place of for merger pass-through; and (iv) an analysis of approximation

based on the alternative �rst order conditions of Section 2.4.

4 Results of Numerical Experiments

4.1 Accuracy with complete information

4.1.1 Prediction error

Table 2 summarizes the absolute prediction error of approximation that arises when complete

information is available for either pre-merger cost pass-through or the second derivatives of

demand in the neighborhood of pre-merger equilibrium. We de�ne absolute prediction error

as the absolute value of the di�erence between approximation and the true price increase.

Thus, absolute error indicates the precision of approximation but not whether price predic-

tions are overstated or understated. The table provides separate statistics for each of the

posited demand systems. Observations are included in the sample only when the true price

e�ect does not exceed 50 percent in order to provide more clarity over a reasonable range. We

calculate approximations alternately based on full knowledge of the second-order properties

of demand in neighborhood of pre-merger equilibrium (\Known Second Derivatives"); based

on full knowledge of pre-merger cost pass-through and the horizontality assumption (\PTRs

with Horizontality"); and based on full knowledge of pre-merger cost pass-through and the

assumption that derivatives of the form@2Qi =@Pj @Pk equal zero (\PTRs with Zeros").

[Table 2 about here.]

The mean absolute prediction error (MAPE) that arises with logit demand ranges

from 0.082 to 0.084. This indicates that approximation yields price predictions that are, on

average, 8.2 to 8.4 percentage points di�erent than the true price e�ect. Since the average

zero, and then invert following equation 5. See also Miller, Remer, and Sheu (2012), which provides an
expression of@f(P)=@Pthat is speci�c to linear demand.
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true price e�ect with logit demand is 0.20, approximation is on average 41%-42% from the

true e�ect. We explore below how that level of accuracy compares to merger simulation

conducted with potentially incorrect assumptions on demand curvature. The MAPE that

arises with the AIDS ranges from 0.8 to 2.6 percentage points. The average true price e�ect

with the AIDS is 0.21 so, in our sample, approximation is on average 4.7%-15.3% from the

true e�ect.

There is no prediction error when demand is linear. This follows from the theoretical

result that approximation is exact with pro�t functions that are quadratic in price, as they

are with linear demand and constant marginal costs. The MAPE that arises with log-linear

demand and known second derivatives (in the neighborhood of pre-merger equilibrium) is

1.07. This level of prediction error is attributable to the inuence of numerous \outliers"

with prediction error well above two (e.g., the maximum prediction error is 66). These

outliers appear to be a characteristic of the approximation, rather than a statistical quirk, in

that informational setting. The MAPE that arises when the approximation is based on cost

pass-through rates is 0.193 and, given the average true price e�ect with log-linear demand

of 0.27, approximation is on average 71.5% from the true e�ect. The approximation does

not seem to provide consistently accurate predictions under the extreme curvature of the

log-linear demand system.

Figure 2 provides scatter-plots of approximation against the true price e�ects for logit

demand, the AIDS and log-linear demand. The case of linear demand is omitted because

approximation is exact in that setting. Printed on each scatter-plot is the 45-degree line;

dots that appear above the line represent instances in which approximation over-predicts the

true price e�ect while dots under the line represent under-predictions. The �gure clari�es

the relative accuracy of the approximation across demand systems and shows how using cost

pass-through rather than direct knowledge of the second-order properties of demand (in the

neighborhood of pre-merger equilibrium) does little to adversely a�ect accuracy. Also notable

is that approximation systematically over-predicts price increases when the true underlying

demand system is logit. This pattern is strongest when approximation is calculated with

known second derivatives and more attenuated when approximation is calculated with cost

pass-through.

[Figure 2 about here.]
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4.1.2 Relative accuracy of approximation and merger simulation

Table 3 tabulates the frequency with which approximation outperforms merger simulation

(in the top panel) and provides the MAPEs that arise with approximation and merger

simulation (in the bottom panel). Approximation is calculated assuming full knowledge

of the second demand derivatives in the neighborhood of pre-merger equilibrium. Merger

simulation is conducting alternately assuming logit demand, the AIDS, and linear demand.26

We compare approximation to each of these merger simulations when the true underlying

demand system is alternately logit, the AIDS, linear and log-linear. Given the design of the

experiments, merger simulation returns the true price e�ect only when the demand curvature

assumption is correct. For example, linear demand merger simulation returns the true price

e�ect when the true underlying demand system is linear but not when it is logit.

[Table 3 about here.]

When the true underlying demand system is logit, the approximation is more accurate

than AIDS simulation in 79.1 percent of the industries considered and more accurate than

linear simulation in 90.3 percent of the industries considered. When true demand is the

AIDS, the approximation is more accurate than merger simulations based on logit demand

and linear demand in 94.8 percent and 87.4 percent of the industries considered, respectively.

The approximation always outperforms misspeci�ed merger simulation when true demand

is linear because approximation is exact in that setting. When true demand is log-linear,

approximation outperforms merger simulation based on logit demand, the AIDS, and linear

demand in about half the considered industries. In most cases, approximation generates

smaller MAPEs than misspeci�ed merger simulation. Together, these comparisons showcase

the potential usefulness of approximation in generating robust predictions when uncertainty

exists regarding the true underlying demand schedule.

4.2 Accuracy with incomplete information

4.2.1 Prediction error with incomplete information

Table 4 summarizes the absolute prediction error that arises when the second derivatives

of demand are unknown and when only incomplete information is available on the pre-

merger cost pass-through. Four informational scenarios are considered: pre-merger cost

26We exclude log-linear merger simulations because the merger simulations often do not identify any
post-merger equilibrium when the true underlying demand system is logit, the AIDS or linear.

20







linear method of allocation industry pass-through outperforms simulation when demand is

the AIDS, linear or log-linear but not when demand is logit. By contrast, the log-linear

method of allocating industry pass-through outperforms simulation when demand is logit.

Again, since the underlying demand system would be unknown in practical applications,

these tabulations do not provide clear guidance on the most appropriate treatment of indus-

try pass-through.

4.3 Extensions

4.3.1 Accuracy with mixed logit demand

Figure 4 provides scatter-plots of approximation against the true price e�ects for logit and

mixed logit demand systems. The approximation is calculated based on full knowledge of

the second-order properties of demand in neighborhood of pre-merger equilibrium. Two

particular mixed logit models are considered, as developed in Section 3.2, based on two

di�erent price parameters:



e�ect of 6.1 percentage points and depending on the precise method with approximation is

conducted. The range is 3.6%-9.9% for AIDS and with log-linear it is 14%, setting aside the

case of known second derivative which is again driven by outliers. Thus, under each demand

system, average accuracy is improved relative to the full sample of randomly drawn industries



proposed by Froeb, Tschantz, and Werden (2005) and discussed in Section 2.4. When ap-

proximation exploits known second derivatives, approximation with the baseline �rst order

conditions is relatively more accurate for logit demand but relatively less accurate for the

AIDS. This reects, in both instances, the unexpected result that the alternative �rst order

conditions systematically generate smaller price increases.28 As developed above, approxi-

mation with the baseline �rst order conditions overstates price increases for logit demand

but not (often) for the AIDS, which leads approximation with the alternative �rst order

conditions to be accurate for logit demand and less accurate for the AIDS. A similar, though

less pronounced, pattern characterizes the results when approximation exploits known cost

pass-through rates and the horizontality assumption. Overall, the results indicate that nei-

ther method of approximation dominates the other in terms of accuracy, and we conclude

that in some applications it could be appropriate to examine the results of both methods.

[Table 7 about here.]

5 Empirical Application

In this section, we demonstrate how the �rst and second derivatives of demand can be

estimated and subsequently used as inputs into the J-W approximation. The data employed

characterize unit sales and average sales prices in a consumer products industry evaluated

in the past by the Antitrust Division. Weekly observations on four popular brands are

available for more than 40 cities over roughly a four year period.29 Our objective is to obtain

a second-order approximation to the unknown demand surface over the range of the data,

which we interpret as representing the neighborhood of pre-merger equilibrium. To that end,

we specify the following demand system:

Qi = � i +
X

j

� ij Pj +
X

j

X

k� j

 ijk Pj Pk + � i ; (18)

where we have suppressed city and week subscripts onQ, P, and � . The intercept term

provides product-level �xed e�ects; suppressed are city and week �xed e�ects. This system

28Approximation with the alternative �rst order conditions generate smaller price increases in 99.5% of
the logit demand industries and 100% of the AIDS industries. This also holds true for log-linear demand,
where the alternative �rst order conditions generate smaller price increases in 93.3% of the randomly-drawn
industries.
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regression coe�cients are unbiased provided that prices are uncorrelated with these shocks.

Such as assumption would be warranted, for example, if prices are set before demand is

realized in the market (e.g., see Hausman, Leonard, and Zona (1994); Weinberg and Hosken

(2012)). Otherwise estimation plausibly could proceed with 2SLS, using prices in other

cities/weeks as instruments, under the appropriate conditions.

Table 8 provides the demand elasticities and cost pass-through rates that are implied

by the OLS regression coe�cients.33 The own-price elasticities of� 3:89, � 1:50, � 1:56, and

� 2:25 imply margins for the four products of 25%, 67%, 64% and 44%, respectively. All of

the cross-price elasticities are positive, consistent with consumer substitution between the

products in response to price uctuations. The own-cost pass-through rates well exceed 50%

and therefore are consistent with convex demand schedules.34 The cross-cost pass-through

rates are positive, with one exception, consistent with prices being strategic complements in

the sense of Bulow, Geanakoplos, and Klemperer (1985).

[Table 8 about here.]

Table 9 reports the results of approximation for a hypothetical merger of the �rst two

products. When calculated using the baseline �rst order conditions and the estimated de-

mand derivatives the predicted price changes are 36.5%, 41.1%, 27.3%, and 21.1% for the

four products, respectively. Also shown are permutations based on di�erent �rst order con-

ditions and di�erent information sets (demand derivatives versus cost pass-through) and the

results of simple approximation. The advantage of these price predictions relative to merger

simulation is that they make use of the estimated second-order properties of demand rather

than imposing these properties through a functional form assumption { that is, they more

fully allow the variation that is present in the data to inform the counter-factual predictions.

While the estimation of demand systems with exible second-order properties requires data

with rich variation in prices, it is feasible that such data will become increasingly available

to researchers and practitioners as �rms collect, store and utilize data more e�ciently.

[Table 9 about here.]

33We make use of equation 5 to convert the regression coe�cients into cost pass-through.
34The implied convexity does not approach that of a log-linear demand system. In that system, the

own-cost pass-through rate equalse=(1 + e), where e is the own-price elasticity of demand. The own-cost
pass-through rates that would arise with log-linear demand, given our elasticity estimates, are 1.31, 3.00,
2.70, and 1.85, respectively, for the four products examined.
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6 Discussion

Our results indicate that approximation can be a useful complement to merger simulation

when su�cient data are available. Whether these complementarities are likely to be recog-

nized by the antitrust community is unclear to us. Certainly the approximation has advan-

tages. It provides a methodology that, in appropriate settings, can be more robust and data

driven than merger simulation. Furthermore, approximation can be explained on an intu-

itive level simply as the product of upward pricing pressure and the appropriate measure of

cost pass-through. We see the downside, relative to merger simulation, as relating primarily

to economists' ability to discern cost pass-through or local demand curvature in the course

of merger investigations. There is also uncertainty as to whether the derived theoretical

relationship between local demand curvature and cost pass-through extends to real-world

settings, or whether �rms more typically apply rules-of-thumb to guide pass-through behav-

ior. We hope that our work proves helpful to the antitrust community in identifying and

evaluating these tradeo�s.

Our work also has implications for industrial economics research. In particular, one

standard methodology employs model-based simulations to evaluate counter-factual scenar-

ios that are outside the range of the available data. The structural parameters of the models

typically are estimated to bring the implied �rst derivatives of demand close to those im-

plied by the data. Our work highlights the importance of thesecondderivatives in driving

the outcomes of simulations. Further, the numerical results we develop indicate the poten-

tial value of approximation as an alternative methodology that is applicable to some of the

counter-factual scenarios of interest in industrial economics. Our results also could moti-

vate econometric research into how to best to obtain second-order approximations to the

unknown demand surface, using non-parametric regression or other techniques. The value

of such research likely is enhanced by the fact that researchers increasingly have access to

data with rich variation that could be exploited in estimation.

Several topics surrounding approximation remain unexplored. We provide a partial

list of potential research questions here with future work in mind. First, under what theo-

retical conditions does approximation overstate and understate the price e�ects of mergers?

Our numerical results indicate that approximation overstates price increases when true un-

derlying demand schedule is logit but this relationship is ambiguous when the underlying

demand schedule is instead almost ideal, log-linear or mixed logit. Research that discerns

how the speci�c theoretical properties of these demand systems a�ect the performance of

approximation would have value. Second, what are the most accurate ways to translate
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information that may be available to researchers (e.g., industry pass-through) into the cost

pass-through or demand curvature information required for approximation? We have pro-

posed a number of possibilities but have not addressed the question systematically. Finally,

how accurate is approximation under di�erent equilibrium concepts? We have focused solely

on Nash-Bertrand competition but both upward pricing pressure and �rst order approxima-

tion are generalizable and can accommodate, for example, equilibria based on Nash-Cournot

competition and consistent conjectures.
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Appendix

A Merger Pass-Through De�ned

In this appendix, we provide an expression for the Jacobian ofh(P), which can be used to

construct merger pass-through as de�ned by Ja�e and Weyl (2012). Using the de�nition

h(P) � f (P) + g(P), we have

@h(P)
@P

=
@f(P)

@P
+

@g(P)
@P

: (21)

The Jacobian off (P) can be written as:

@f(P)
@P

=

2

6
6
4

@f1 (P )
@p1

: : : @f1 (P )
@pN

...
. . .

...
@fJ (P )

@p1
: : : @fJ (P )

@pN

3

7
7
5 ; (22)

whereN is the total number of products andJ is the number of �rms. The vectorP includes

all prices; we use lower case to refer to the prices of individual products, so thatpn represents

the price of productn. In the case that productn is sold by �rm i ,

@fi (P)
@pn

= �

2

6
6
6
6
6
6
6
4

0
...

1

0
...

3

7
7
7
7
7
7
7
5

+
�

@Qi
@Pi

T � � 1
"

@2Qi

@Pi @pn

T
# �

@Qi
@Pi

T � � 1

Qi �
�

@Qi
@Pi

T � � 1 �
@Qi
@pn

�
; (23)

whereQi andPi are vectors representing the quantities and prices respectively of the products

owned by �rm i , and the initial vector of constants has a 1 in the �rm-speci�c index of the

product n. For example, if product 5 is the third product of �rm 2, then the 1 will be in

the 3rd index position when calculating@f2(P)=@p5. If product n is not sold by �rm i , the

vector of constants is~0, and thus

@fi (P)
@pn

=
�

@Qi
@Pi

T � � 1
"

@2Qi

@Pi @pn

T
# �

@Qi
@Pi

T � � 1

Qi �
�

@Qi
@Pi

T � � 1 �
@Qi
@pn

�
: (24)
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Figure 1: Graphical Illustration of First Order Approximation
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Figure 2: Prediction Error with Complete Information.
Notes: The �gure provides scatter-plots of approximation against the true price e�ect for logit demand, the AIDS and log-
linear demand. The case of linear demand is omitted because approximation is exact in that setting. Approximations are
calculated alternately based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equi-
librium (\Known 2nd Derivatives"); based on full knowledge of pre-merger cost pass-through and the horizontality assumption
(\PTRs with Horizontality"); and based on full knowledge of pre-merger cost pass-through and the assumption that derivatives
of the form @2Q i =@Pj @Pk equal zero (\PTRs with Zeros").
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Figure 3: Prediction Error with Incomplete Information
Notes: The �gure provides scatter-plots of approximation against the true price e�ect for logit demand, the AIDS, linear
demand and log-linear demand. Four informational scenarios are considered: pre-merger cost pass-through that is available
only for own costs (\Own Cost PTRs"); pre-merger cost pass-through that is available only for the merging �rms (\Merging
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Figure 4: Prediction Error with Complete Information { Logit and Mixed Logit Demand
Notes: The �gure provides scatter-plots of approximation against the true price e�ect for logit and mixed logit demand. The
approximation is calculated based on full knowledge of the second-order properties of demand in neighborhood of pre-merger
equilibrium.
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Figure 5: Prediction Error with Simple Approximation
Notes: The �gure provides scatter-plots of simple approximation against the true price e�ect for logit demand, the AIDS, linear
demand and log-linear demand. The approximation is calculated based on full knowledge of the second-order properties of
demand in neighborhood of pre-merger equilibrium.
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Figure 6: Prices and Unit Sales in a Representative City.
Notes: The �gure provides a scatter-plot of the weekly average sales price and unit sales for one product in a representative
city. To protect the con�dentiality of the data, a small number of outliers have been omitted and both average sales price and
unit sales have been scaled by an unspeci�ed constant and perturbed additively by a uniformly distributed random variable.
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Table 1: Summary Statistics

Mean St. Dev. 5th pctile 95th pctile

Characteristics of Firm 1
Market share 0.37 0.15 0.10 0.58
Margin 0.46 0.17 0.22 0.75
Own-price elasticity 2.57 1.48 1.33 4.52

Characteristics of Firm 2
Market share 0.31 0.15 0.08 0.54
Margin 0.44 0.21 0.17 0.87
Own-price elasticity 2.86 1.83 1.15 5.96

Consumer Substitution
Diversion from 1 to 2 0.50 0.23 0.15 0.90
Diversion from 2 to 1 0.54 0.22 0.16 0.90

Merger Simulation Results Conditional on� P < 0:50
Logit demand 0.20 0.13 0.04 0.44
AIDS 0.17 0.13 0.02 0.43
Linear demand 0.20 0.13 0.04 0.46
Log-linear demand 0.27 0.13 0.06 0.47
Mixed Logit demand (�

4 ) 0.20 0.13 0.04 0.44
Mixed Logit demand (�

2 ) 0.19 0.12 0.03 0.44
Notes: Summary statistics are based on 300 randomly-drawn industries. The merger simu-
lation results show changes in �rm 1's price, conditional on that change being under 50%.
With logit demand, 242 of the 300 randomly-drawn industries produce such a price change.
With the AIDS, linear demand, and log-linear demand, 191, 190, and 45 industries produce
such a price change, respectively.
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Table 2: Absolute Prediction Error with Complete Information

Logit Demand AIDS

Mean 5th pctile 95th pctile Mean 5th pctile 95th pctile
Known Second Derivatives 0.084 0.000 0.339 0.008 0.000 0.023
PTRs with Horizontality 0.082 0.001 0.319 0.026 0.001 0.081
PTRs with Zeros 0.083 0.002 0.320 0.013 0.000 0.046

Linear Demand Log-linear Demand

Mean 5th pctile 95th pctile Mean 5th pctile 95th pctile
Known Second Derivatives 0 0 0 1.072 0.003 2.189
PTRs with Horizontality 0 0 0 0.193 0.006 0.395
PTRs with Zeros 0 0 0 0.193 0.006 0.395
Notes: The table provides summary statistics regarding the absolute prediction errors of approximation. Absolute prediction





Table 4: Absolute Prediction Errors with Incomplete Information

Logit Demand AIDS

Mean 5th pctile 95th pctile Mean 5th pctile 95th pctile
Own Cost PTRs 0.096 0.013 0.260 0.094 0.007 0.288
Merging Firms' PTRs 0.019 0.001 0.058 0.018 0.002 0.071
Ind. PTRs { Adj.-Linear 0.266 0.003 1.107 0.025 0.001 0.106
Ind. PTRs { Log-Linear 0.052 0.005 0.169 0.067 0.001 0.246

Linear Demand Log-linear Demand

Mean 5th pctile 95th pctile Mean 5th pctile 95th pctile
Own Cost PTRs 0.128 0.017 0.330 0.193 0.006 0.395
Merging Firms' PTRs 0.025 0.003 0.080 0.193 0.006 0.395
Ind. PTRs { Adj.-Linear 0 0 0 0.142 0.007 0.320
Ind. PTRs { Log-Linear 0.078 0.004 0.259 0.193 0.006 0.395
Notes: The table provides summary statistics regarding the absolute prediction errors of approximation. Separate statistics
are shown for logit demand, the AIDS, linear demand and log-linear demand. Observations are included only when the true
price e�ect does not exceed 50 percent. Four informational scenarios are considered: pre-merger cost pass-through that is
available only for own costs, i.e., the o�-diagonal elements are unknown (\Own Cost PTRs"); pre-merger cost pass-through
that is available only for the merging �rms (\Merging Firms' PTRs"); industry cost pass-through that is apportioned using the
adjusted-linear method (\Ind. PTRs { Adj.-Linear"); and industry cost pass-through that is apportioned using the log-linear
method (\Ind. PTRs { Log-Linear").
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Table 6: Mean Absolute Prediction Error for Small Price Changes
Logit AIDS Linear Log-Linear

Known Second Derivatives 0.016 0.002 0 4.614
PTRs with Horizontality 0.010 0.005 0 0.091
PTRs with Zeros 0.010 0.004 0 0.091
Notes: The table provides the mean absolute prediction errors of approximation that
arise when the true price e�ect does not exceed 10%. Separate statistics are shown for
logit demand, the AIDS, linear demand and log-linear demand. The approximation is
calculated alternately based on full knowledge of the second-order properties of demand
in neighborhood of pre-merger equilibrium (\Known Second Derivatives"); based on full
knowledge of pre-merger cost pass-through and the horizontality assumption (\PTRs



Table 7: Mean Absolute Prediction Error with Alternative FOCs

Logit AIDS Linear Log-Linear

Known Second Derivatives
Baseline FOC 0.084 0.008 0 1.072
Alternative FOC 0.061 0.103 0 0.150

PTRs with Horizontality
Baseline FOC 0.082 0.026 0 0.193
Alternative FOC 0.084 0.054 0 0.176

Notes: The table provides the mean absolute prediction errors that arise with both
the baseline �rst order conditions and with the alternative �rst order conditions. Sep-
arate statistics are shown for logit demand, the AIDS, linear demand and log-linear
demand. Observations are included only when the true price e�ect does not exceed 50
percent. The approximation is calculated alternately based on full knowledge of the
second-order properties of demand in neighborhood of pre-merger equilibrium (\Known
Second Derivatives") and based on full knowledge of pre-merger cost pass-through with
the horizontality assumption(\PTRs with Horizontality").
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Table 8: Results from OLS Regressions

Panel A: Demand Elasticity Estimates

Product 1 Product 2 Product 3 Product 4

Product 1 -4.22 0.19 0.09 0.55
Product 2 1.96 -1.50 0.35 1.78
Product 3 1.16 0.34 -1.59 0.65
Product 4 1.88 0.81 0.37 -2.17

Panel B: Cost Pass-Through Estimates

Product 1 Product 2 Product 3 Product 4

Product 1 0.82 0.17 -0.07 0.31
Product 2 0.64 1.32 0.08 1.65
Product 3 1.14 0.52 2.54 3.75
Product 4 0.35 0.29 0.03 1.36
Notes: The elasticities and cost pass-through rates are inferred from OLS regression
coe�cients. In Panel A, the top number in the second column is the elasticity of
demand for product 1 with respect to the price of product 2, and the remaining
numbers are calculated accordingly. In Panel B, the top number in the second
column is the pass-through rate of product 1 with respect to the costs of product
2, and again the remaining numbers are calculated accordingly.
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Table 9: Approximation Results for Merger of Products 1 and 2

Product 1 Product 2 Product 3 Product 4

Known 2nd Derivatives
Baseline FOC 36.5% 41.1% 27.3% 21.1%
Alternative FOC 28.5% 31.0% 21.2% 16.2%

PTRs with Horizontality
Baseline FOC 57.0% 51.1% 40.9% 29.7%
Alternative FOC 37.3% 32.8% 26.7% 19.3%

PTRs with Zeros
Baseline FOC 41.1% 36.5% 29.4% 21.3%
Alternative FOC 29.8% 26.0% 21.2% 15.3%

Simple Approximation 26.0% 20.3% 18.2% 12.8%
Notes: Approximation is based on the estimated demand derivatives and either uses these derivatives
directly (\Known 2 nd Derivatives") or uses the implied cost pass-through rate matrix.
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