ECONOMIC ANALYSIS GROUP DISCUSSION PAPER

Approximating the Price E ects of Mergers: Numerical Evidence and an Empirical Application

By

Nathan H. Miller, Conor Ryan, Marc Remer and Gloria Sheu* EAG 12-8 October 2012

EAG Discussion Papers are the primary vehicle used to disseminate research from economists in the Economic Analysis Group (EAG) of the Antitrust Division. These papers are intended to inform interested individuals and institutions of EAG's research program and to stimulate comment and criticism on economic issues related to antitrust policy and regulation. The analysis and conclusions expressed herein are solely those of the authors and do not represent the views of the United States Department of Justice.

Information on the EAG research program and discussion paper series may be obtained from Russell Pittman, Director of Economic Research, Economic Analysis Group, Antitrust Division, U.S. Department of Justice, BICN 10-000, Washington DC 20530, or by e-mail at russell.pittman@usdoj.gov. Comments on specic papers may be addressed directly to the authors at the same mailing address or at their email address.

Recent EAG Discussion Paper titles are listed at the end of this paper. To obtain a complete list of titles or to request single copies of individual papers, please write to Janet Ficco at the above mailing address or at janet.cco@usdoj.gov. In addition, recent papers are now available on the Department of Justice website at http://www.usdoj.gov/atr/public/eag/discussion papers.htm. Beginning with papers issued in 1999, copies of individual papers are also available from the Social Science Research Network at www.ssrn.com.

*Economic Analysis Group, Antitrust Division, U.S. Department of Justice. Email contacts: nathan.miller@usdoj.gov, conor.ryan@usdoj.gov, marc.remer@usdoj.gov, gloria.sheu@usdoj.gov. We thank Sonia Jae, Charles Taragin, Glen Weyl, Nathan Wilson and seminar participants at the U.S. Department of Justice and Michigan State University for valuable comments. The views expressed herein are entirely those of the authors and should not be purported to re
ect those of the U.S. Department of Justice.

Abstract

We analyze the accuracy of rst order approximation, a method developed theoretically in Ja e and Weyl (2012) for predicting the price e ects of mergers, and provide an empirical application. Approximation is an alternative to the model-based simulations commonly employed in industrial economics. It provides predictions that are free from functional form assumptions, using data on either cost pass-through or demand curvature in the neighborhood of the initial equilibrium. Our numerical experiments indicate that approximation is more accurate than simulations that use incorrect struc-

1 Introduction

Horizontal mergers can diminish the incentives of the merging rms to compete aggressively, as each merging rm internalizes the impact of its actions on the pro ts of the other. The literature on antitrust economics characterizes this e ect as arising due to the creation of opportunity costs; each merging rm, when making a sale, forgoes with some probability a sale by the other merging rm. This interpretation is useful because these opportunity costs can be measured with data on the consumer substitution patterns and margins that arise in the pre-merger equilibrium.¹ Building on this logic, Ja e and Weyl (2012) provide general conditions under which the price e ects of mergers can be calculated, to a rst-order approximation, by multiplying these opportunity costs with an appropriate measure of cost pass-through. This calculation, hereafter referred to as \approximation," is the subject of our research.

Approximation provides an alternative to simulation for evaluating counter-factual scenarios, both in merger analysis and in industrial economics more broadly. One recognized limitation of simulation is that structural assumptions typically determine how economic behavior changes away from the initial equilibrium. In the merger context, research has shown that simulation can be sensitive to assumptions on the curvature of the consumer demand schedule (Crooke, Froeb, Tschantz, and Werden (1999)). By contrast, approximation provides robust counter-factual predictions, exploiting data on either cost pass-through or demand curvature in the neighborhood of the initial equilibrium, and allows researchers to remain agnostic about the relevant functional forms.²

We make two primary contributions in this paper. First, we use numerical experiments to assess the accuracy of approximation. The experiments are valuable because the theoretical results of Ja e and Weyl (2012) demonstrate the precision of approximation only with

 2 The connection between cost pass-through and consumer demand is developed in the recent theoretical literature (e.g. Jae and Weyl (2012), Miller, Remer, and Sheu (2012), Weyl and Fabinger (2012)).

¹Farrell and Shapiro (2010a) refer to the opportunity costs created by a merger as gross upward pricing pressure (UPP). The Horizontal Merger Guidelines of the U.S. Department of Justice and the Federal Trade Commission, as revised in 2010, endorse upward pricing pressure as informative of the likely competitive e ects of mergers. See Horizontal Merger Guidelines 6.1:

[\]The value of sales diverted to a product is equal to the number of units diverted to that product multiplied by the margin between price and incremental cost on that that product. In some cases, where sucient information is available, the Agencies assess the value of diverted sales, which can serve as a diagnostic of the upward pricing pressure.... The Agencies rely much more on the value of diverted sales than on the level of the HHI for diagnosing unilateral price e ects in markets with di erentiated products."

upward pricing pressure that is arbitrarily small and with prot functions that are quadratic in price.³ Accuracy is theoretically ambiguous outside these special cases. While it is reasonable to expect the accuracy of approximation to decrease with the magnitude of upward pricing pressure and the importance of the higher order properties of demand, it is unclear how these factors interact and at what rate the precision degrades.

We focus on horizontal mergers in the numerical experiments but note that the logic of approximation extends to other counter-factual exercises that involve perturbations to rms' marginal costs or opportunity costs. Examples include the economic impacts of emissions trading programs, gasoline taxes, taris and duties, and exchange rate uctuations. Since each deals with fundamentally the same issue { the extent to which rms transmit cost shocks to nal prices { our numerical experiments on mergers likely characterize the accuracy of approximation more broadly.

Our second primary contribution is an empirical application that demonstrates how approximation can be applied given scanner data with su cient price and quantity variation. The data employed characterize unit sales and average sales prices in a consumer products industry evaluated in the past by the Antitrust Division of the U.S. Department of Justice. We use standard econometric techniques to obtain a second-order approximation of the unknown demand surface in the range of the data, which we interpret as representing the neighborhood of the pre-merger equilibrium. The results allow us to infer the appropriate measure of pass-through and apply the approximation to evaluate the likely price e ects of a hypothetical merger. This approach is in stark contrast to more conventional demand estimation, which seeks to obtain the rst derivatives of demand (i.e., the demand elasticities) based on functional form assumptions that restrict the second-order properties of demand.

By way of preview, the numerical results characterize the accuracy across a variety of economic environments, including a range of upward pricing pressure and four demand systems that commonly are employed in antitrust analysis: logit demand, the almost ideal demand system (AIDS) of Deaton and Muellbauer (1980), linear demand and log-linear (or isoelastic) demand. In each case, we compare approximation both to the true price e ect, supplied by merger simulation conducted with the correct demand system, and to merger simulation conducted with an incorrect assumption on demand curvature.

We nd that approximation provides accurate predictions when the true underlying demand schedule is linear (where it is exact) or the AIDS. Approximation is relatively less accurate when the true demand is logit or log-linear. We also nd that the precision of

 3 Quadratic pro t functions arise for rms with constant marginal costs and facing linear demand.

cost pass-through or the second-order properties of demand, compare approximation to merger simulation, and show that rearranging the rms' rst order conditions leads to an alternative formulation of the approximation. In Section 3, we discuss the design of the numerical experiments and in Section 4 we provide the results. Finally, Section 5 develops the empirical application and Section 6 concludes.

2 Overview of Merger Approximation

2.1 Derivation and graphical illustration

We focus on models of Bertrand-Nash competition in which rms face well-behaved, twicedierentiable demand functions.⁴ Each rm i produces some subset of the products available to consumers and sets prices to maximize short-run pro ts, taking as given the prices of its competitors. The pro ts of rm i have the expression

$$
{i} = P{i}^{T} Q_{i} (P) \t C_{i} (Q_{i} (P)); \t (1)
$$

where P_{i} is a vector of rm i's prices, Q_{i} is a vector of rm i's sales, P is a vector containing the prices of every product, and \textsf{C}_i is the cost of $\;$ rm i. The following $\;$ rst order conditions characterize rm i's pro t-maximizing prices:

$$
f_i(P) \qquad \frac{{}^{\omega} \mathbf{Q}(P)}{{}^{\omega} P}^{\top} \mathbf{Q}_i(P) \qquad (P_i \qquad MC_i) = 0; \qquad (2)
$$

where \sf{MC}_i is a vector of rm i's marginal costs (i.e., $\sf{MC}_i\,=\, \mathscr{Q}$ C= \mathscr{Q} Q. While rst order conditions can be manipulated to yield various expressions, each of which characterizes the same pro t-maximizing prices, the selected formulation is increasingly popular among

merger, to a rst approximation, are given by the vector

$$
P = \frac{\textcircled{a} \text{K}P}{\textcircled{a}P} \bigg|^{1} h(P^{0}):
$$

Here the vector $h(P^0)$ is equivalent to net upward pricing pressure because f $(P^0) = 0$ by de nition. The matrix $(\textcircled{a} \texttt{(p)} = \textcircled{a} \texttt{p}^{-1} \texttt{j}_{\texttt{P} = \texttt{P}_{\text{O}}}$ is the opposite inverse Jacobian of $\texttt{h}(\texttt{P})$, evaluated at pre-merger prices, and captures how net upward pricing pressure is transmitted to consumers. Ja e and Weyl (2012) refer to this matrix as merger passtomough sistent with the interpretation of upward pricing pressure as an opportunity cost, merger pass-through is related closely to the cost pass-through rates that arise in the pre-merger equilibrium. We explore this connection more deeply in Section 2.2.

To build intuition, we represent a simpli ed version of the approximation graphically.⁶ Figure 1 plots a hypothetical function $h_i(P_i; P^0_i)$ for the single-product rm i, holding the prices of other products xed at pre-merger equilibrium levels. Thus, the intersection of h_i (P_i; P^o_i) with the horizontal axis provides the optimal price of rm i given that other prices remain unchanged from the pre-merger equilibrium.⁷ The dashed line is the tangent to $h_i(P_i; P^0_i)$ at the pre-merger price. The post-merger price of $\;$ rm i can be approximated by projecting this tangent to its point of intersection with the horizontal axis, which is equivalent to applying a single step of Newton's method. In this example, the convexity of $\mathsf{h_i}(\mathsf{P_i};\mathsf{P^0}_i)$ leads the approximation to understate the optimal price of the product given other prices at pre-merger levels. The convexity or concavity of the $\mathsf{h_i(P_i; P^0_i)}$ depends on the higher-order properties of demand and, in general, the approximation could understate or overstate the pro t-maximizing post-merger prices.

[Figure 1 about here.]

Theorem 1 implies that approximation is precise when upward pricing pressure is arbitrarily small and also with pro t functions that are quadratic in price (e.g., with linear

⁶We impose that $@$ h P)= $@$ Pis diagonal solely for the purpose of the graphical demonstration. The restriction implies that prices are una ected by the costs of other products so that, for instance, there is no strategic complementarity or substitutability as dened by Bulow, Geanakoplos, and Klemperer (1985). Economic theory dictates that the Jacobian of (P) is never actually diagonal. Even in the case of log-linear d emand \sim

demand and constant marginal costs). Outside of these special cases, the precision of approximation is theoretically ambiguous. While the accuracy of the approximation may be expected to decrease with the magnitude of upward pricing pressure and with the curvature in $h(P)$, it is unclear how these factors interact and at what rate the precision degrades. The numerical experiments that we conduct are designed to evaluate the accuracy of approximation in such settings.

2.2 Obtaining merger pass-through

First order approximation requires knowledge of merger pass-through which, as can be ascertained from equations 2-4, depends on the rst and second derivatives of demand.⁸ The informational demands of approximation therefore exceed those of merger simulation, which requires knowledge only of rst derivatives. In this section, we discuss how knowledge of merger pass-through can be obtained. We encourage the reader to keep in mind that the results of our numerical experiments suggest that approximation often retains precision when knowledge of merger pass-through is imperfect. Further, we develop below that pre-merger cost pass-through sometimes can serve as a reasonable proxy for merger pass-through.

One approach to obtaining the requisite demand derivatives for merger pass-through is to estimate them from data. The translog demand model of Christensen, Jorgenson, and Lau (1975) and the almost ideal demand system (AIDS) of Deaton and Muellbauer (1980) each have somewhat exible second order properties and, given su cient data, could be estimated. Alternatively, models with fully exible rst and second order properties could be used. Along these lines, in our empirical application we use scanner data to estimate a system of equations that provides second-order approximations to demand in the neighborhood of premerger equilibrium. We derive the rst and second demand derivatives from the regression coe cients and apply approximation to evaluate a hypothetical merger.⁹ The estimation of demand systems with
exible second order properties typically requires data with unusually rich price variation and is not feasible for many applications.

An alternative approach is to infer merger pass-through from pre-merger cost passthrough and knowledge of the rst derivatives of demand. Cost pass-through has been estimated in the academic literature (e.g., Besanko, Dube, and Gupta (2005)) and in conjunction with antitrust litigation (e.g., Ashenfelter, Ashmore, Baker, and McKernan (1998)). The key to this alternative approach is that cost pass-through is tightly linked to demand

⁸We defer the derivation of merger pass-through to Appendix A.

⁹See Section 5 for details.

curvature. Following Ja e and Weyl (2012), this connection can be derived from the rst order conditions of equation 2. Consider the imposition of a per-unit tax on each product, which serves to perturb marginal costs, and denote the vector of taxes t. Since marginal costs enter quasi-linearly into the rst order conditions of each rm with a coe cient of one, the post-tax pre-merger rst order conditions can be written

$$
f(P) + t = 0
$$
:

Dierentiating with respect to t obtains

$$
\frac{\textcircled{e} \text{P} \textcircled{f} \text{P}}{\textcircled{e} \text{t} \textcircled{e} \text{P}} + \text{I} = 0;
$$

and algebraic manipulations then yield the pre-merger cost pass-through matrix:

$$
pre \quad \frac{\textcircled{a} P}{\textcircled{a} t} = \quad \frac{\textcircled{a} f(P)}{\textcircled{a} P} \quad \overset{1}{\cdot} \tag{5}
$$

The Jacobian of $f(P)$ depends on the rst and second derivatives of demand, as is clear from equation 2.¹⁰ Provided that the rst derivatives are known, numerical optimization can be used to select second derivatives that rationalize pre-merger cost pass-through, i.e. second derivatives that minimize the \distance" between the elements in the implied opposite inverse Jacobian of $f(P)$ and the elements in the observed pre-merger cost pass-through matrix.¹¹ These second derivatives can then be used, in conjunction with the rst derivatives, to calculate merger pass-through.

Some additional assumptions are necessary. Since the matrices that appear in equation (5) are of dimensionality N N , where N is the number of products, the relationship between pre-merger cost pass-through and the Jacobian of $f(P)$ provides N^2 equations with which to identify unknown second derivatives. An assumption that demand satis es Slutsky symmetry is su cient for identi cation in the special case of a merger among single product duopolists.¹² In other cases, second derivatives of the form $\frac{\textup{@Q}_i}{\textup{@P}@R}$, for **i** $\bm{\theta}$ **j**, **i** $\bm{\theta}$ **k** and

$$
\frac{\mathcal{QQ}_i}{\mathcal{QP}_j} = \frac{\mathcal{QQ}}{\mathcal{QP}} = \frac{\mathcal{QQ}}{\mathcal{QQ}} = \frac{\mathcal{QQ}}{\mathcal{QQ}} = \frac{\mathcal{QQ}_j}{\mathcal{QQ}} = \frac{\math
$$

 10 Equation 5 clari es the link between pre-merger cost pass-through and merger pass-through: the former depends on the Jacobian of the (P) while the latter depends on the Jacobian ofh(P); evaluated at premerger prices in both cases.

 11 In our numerical experiments, we select the second derivatives to minimize the sum of squared deviations. 12 Slutsky symmetry implies $\frac{\textcircled{\textrm{Q}}}{\textcircled{\textrm{R}}}$ = $\frac{\textcircled{\textrm{Q}}}{\textcircled{\textrm{R}}}$ $\frac{\omega Q}{\omega R}$ and it follows that:

j 6 k, are not identi ed from equation (5) even with Slutsky symmetry. These second derivatives are plausibly small, however, and it may be reasonable to normalize them to zero. Alternatively, Ja e and Weyl (2012) suggest the following \horizontality" assumption on demand:

$$
Q_i(P) = P_i + \begin{matrix} \times & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ i & \in I \end{matrix} \tag{6}
$$

for some \therefore R ! R and \therefore R ! R, which is sucient for full identication. The needed second derivatives then take the form

$$
\frac{\textcircled{\tiny{\textcircled{\tiny{Q}}}}_i}{\textcircled{\tiny{\textcircled{\tiny{P}}}}\textcircled{\tiny{\textcircled{\tiny{R}}}}}
$$

Approximation di ers from merger simulation primarily in how the second derivatives of demand are treated, or equivalently, in how demand elasticities are projected to change as prices move away from the pre-merger equilibrium. Whereas merger simulation employs

a clean assessment of the accuracy of approximation because it links the demand derivatives and cost pass-through that arise in pre-merger equilibrium to the underlying demand system used to conduct merger simulation.

3.2 Data generating process

3.2.1 Overview

In each experiment, we consider an industry with three single-product rms and evaluate merger between the rst two rms. We begin with prices, quantities and the rst rm's margin, which is su cient information to calibrate a logit demand model. Speci cally, the market shares of the rst and second rms are from a uniform distribution with support between 5% and 65%. So as not to exceed the size of the market, the second rm's share also faces the upper bound of one minus the rst rm's share. The third rm receives the

of non-merging rms is a second-order consideration in our exercise, taking as given the upward pricing pressure created by the merger, and for the sake of simplicity we incorporate only a single non-merging rm. We note that the calibration process imposes that customer substitution among the three rms is proportional to market share for logit demand, the AIDS, linear demand and log-linear demand in the pre-merger equilibrium; the property is maintained away from the pre-merger equilibrium only for logit demand.²⁰ The mixed logit experiments allow us to examine more exible consumer substitution patterns.

3.2.2 Mathematical details

We turn now to the mathematics of the selected demand systems and the calibration process. We start with the logit demand system, which takes the form

$$
S_i = \frac{\Theta^{(i P_i)=}}{k \Theta^{(k P_k)=}};
$$
\n(13)

where ${\sf S}_{\sf i}$ is the share of rm i (i.e. ${\sf S}_{\sf i} = {\sf Q}_{\sf i}$ =M for market size M). The unknowns include the **J** product-speci c terms (\overrightarrow{i}) and a single scaling/price coe cient (). The system is under-de ned, which we account for by normalizing the value for the last product to one. The implied elasticities evaluated at pre-merger equilibrium are

$$
j_{jk} = \begin{cases} (1 + S_j) = & \text{if } j = k \\ S_k = & \text{if } j \in k \end{cases}
$$
 (14)

is quantity. The log-linear demand system takes the form

$$
\ln(Q_i) = \sum_{j} \frac{1}{2} \ln P_j; \qquad (16)
$$

where represents the product-speci c intercepts and is as de ned in equation (14). The AIDS of Deaton and Muellbauer (1980) takes the form

$$
W_{i} = \sum_{j} \frac{X}{i} \log P_{j} + i \log(X = P); \tag{17}
$$

where W_i is an expenditure share (i.e., W_i = P_iQ_i = $\overline{}_{k}P_kQ_k)$, X is the total expenditure and P is a price index given by

$$
\log(P) = \bigg|_0 + \sum_{k}^{K} \log(P_k) + \frac{1}{2} \sum_{k}^{K} \log(P_k) \log(P_l)
$$

We focus on the special case of $i = 0$, consistent with common practice in antitrust applications (e.g, Epstein and Rubinfeld (1999)). The restriction is equivalent to imposing an income elasticity of one. While the log-linear and linear demand systems require all the margins, the restricted AIDS model only requires two. Thus, the margins for the AIDS model are slightly dierent than those of the previous three models.

We also generate results for the mixed (or \random coe cients") logit demand system that is popular in empirical industrial economics research. We focus on a specic case in which market shares take the form

$$
S_i \ = \ \ \begin{array}{cc} \sum & \qquad \qquad \text{${\rm e}^{\left(\begin{array}{cc} i & \left(1 + \quad \right) P_i \right) = \end{array}} \\ \text{${\rm e}^{\left(\begin{array}{cc} i & \left(1 + \quad \right) P_k \right) = \end{array}}$} \text{${\rm e}^{\left(\begin{array}{cc} i & \left(1 + \quad \right) P_k \right) = \end{array}}$} \text{${\rm e}^{\left(\begin{array}{cc} i & \left(1 + \quad \right) P_k \right) = \end{array}}$} \end{array}$}
$$

where $F()$ is a distribution that we assume to be normal with mean zero and variance one. We select based on the already calibrated standard logit model. We select two values of for investigation: $= 1=(2)$, which implies that roughly 95% of consumers have downwardsloping demand, and $= 1=(4)$, which is selected as a halfway point to the standard logit model. We then we take 1,000 draws from the distribution of and calibrate the product speci c intercepts to match the observed market shares. As in the standard logit model, we normalize the intercept of the third product to one. The results generated for this particular speci cation of the mixed logit model may not generalize to other speci cation employed in the empirical literature that feature dierent or multiple distributions of consumer tastes.

We nonetheless consider the exercise to have value, insofar as it shows how the accuracy of approximation can change based on the true underlying preferences of consumers.²²

3.3 Summary statistics

Table 1 provides summary statistics on the randomly-generated industries. As shown, the average market share and margin the rst rm are 37% and 46%, respectively. Substantial variation exists in each. For instance, the fth and ninety-fth market share percentiles are 10% and 58%. The market shares and margins of the second rm are somewhat smaller, due to the mathematical restriction that the second rm's share can never exceed one minus the rst rm's share. The margins of rst rm corresponds to a pre-merger own-price demand elasticities of 2.57. Given the market shares, the average implied diversion ratio from rm 1 to rm 2 is 50% in the pre-merger equilibrium and the corresponding diversion ratio from rm 2 to rm 1 is 54%. The average simulated price changes are 20%, 17%, 20% and 27% for logit demand, the AIDS, linear demand and log-linear demand, respectively, conditional on the restriction to mergers that create price e ects less than 50% ²³ The randomly-drawn

3.4 Research objectives

We develop three main sets of numerical results. The rst pertains to the accuracy of approximation when complete information is available either on pre-merger cost pass-through or on the second derivatives of demand in the neighborhood of pre-merger equilibrium. For each combination of draws and each demand system, we calculate approximation three ways: based on the second derivatives of demand, based on pre-merger cost through with the horizontality assumption, and based on pre-merger cost pass-through setting derivatives of the form $\mathcal{O}_Q = \mathcal{O}_P$ equal to zero. The results characterize the performance of the approximation under the most advantageous of circumstances.

The second main set of results pertains to the accuracy of approximation when incomplete information is available on the pre-merger cost pass-through. These results may prove valuable to researchers and practitioners presented with data that are insu ciently rich to identify the full pass-through matrix. We consider two scenarios in which some of elements of the cost pass-through are known:

Cost pass-through is available only for the merger $\rm{rms.}^{24}$ To implement approximation, we impute the own-cost pass-through rate of non-merging rm using the mean of the own-cost pass-through rates of the merging rms and impute cross-cost pass-through rates involving the non-merging rms using the mean of the cross-cost pass-through rates of the merging rms.

Only own-cost pass-through is available, i.e., the o-diagonal elements of the cost passthrough matrix are unknown. To implement approximation, we treat the cross-cost pass-through terms as equaling zero.

We also consider two scenarios in which only industry cost pass-through rates are available. Industry pass-through captures the e ects of a cost shock common to all rms; from a mathematical standpoint, the industry pass-through can be calculated by summing across the rows of the cost pass-through matrix. We implement approximation two ways:

We calculate the cost pass-through matrix that would arise given linear demand, given the the rst derivatives of demand, and then scale the matrix to reproduce industry cost pass-through. We refer to this as the \adjusted-linear" method.²⁵

²⁴In practice, this scenario could arise when an antitrust authority has superior ability to compel document and data productions from merging rms than from non-merging rms.

²⁵To obtain obtain the cost pass-through matrix, we rst calculate $\mathcal{Q}f(P)=\mathcal{Q}P$ based on the equation in Appendix A, making use of the known rst derivatives and presumption that the second derivatives equal

We set the own-cost pass-through rates equal to the industry pass-through rates and set the cross-cross pass-through rates to zero. This treatment is consistent with log-linear demand and we refer to it at the \log-linear" method.

Finally, we provide a number of extensions. These include (i) an examination of how well the approximation performs with mixed logit demand; (ii) an analysis of approximation for small price changes; (iii) an examination of \simple approximation" that uses pre-merger cost pass-through in place of for merger pass-through; and (iv) an analysis of approximation based on the alternative rst order conditions of Section 2.4.

4 Results of Numerical Experiments

4.1 Accuracy with complete information

4.1.1 Prediction error

Table 2 summarizes the absolute prediction error of approximation that arises when complete information is available for either pre-merger cost pass-through or the second derivatives of demand in the neighborhood of pre-merger equilibrium. We dene absolute prediction error as the absolute value of the dierence between approximation and the true price increase. Thus, absolute error indicates the precision of approximation but not whether price predictions are overstated or understated. The table provides separate statistics for each of the posited demand systems. Observations are included in the sample only when the true price e ect does not exceed 50 percent in order to provide more clarity over a reasonable range. We calculate approximations alternately based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium (\Known Second Derivatives"); based on full knowledge of pre-merger cost pass-through and the horizontality assumption (\PTRs with Horizontality"); and based on full knowledge of pre-merger cost pass-through and the assumption that derivatives of the form $@Q_i = @P@R$ equal zero (\PTRs with Zeros").

[Table 2 about here.]

The mean absolute prediction error (MAPE) that arises with logit demand ranges from 0.082 to 0.084. This indicates that approximation yields price predictions that are, on average, 8.2 to 8.4 percentage points dierent than the true price eect. Since the average

zero, and then invert following equation 5. See also Miller, Remer, and Sheu (2012), which provides an expression of $@f(P) = @P$ that is speci c to linear demand.

true price e ect with logit demand is 0.20, approximation is on average 41%-42% from the true e ect. We explore below how that level of accuracy compares to merger simulation conducted with potentially incorrect assumptions on demand curvature. The MAPE that arises with the AIDS ranges from 0.8 to 2.6 percentage points. The average true price e ect with the AIDS is 0.21 so, in our sample, approximation is on average 4.7%-15.3% from the true e ect.

There is no prediction error when demand is linear. This follows from the theoretical result that approximation is exact with pro t functions that are quadratic in price, as they are with linear demand and constant marginal costs. The MAPE that arises with log-linear demand and known second derivatives (in the neighborhood of pre-merger equilibrium) is 1.07. This level of prediction error is attributable to the in
uence of numerous \outliers" with prediction error well above two (e.g., the maximum prediction error is 66). These outliers appear to be a characteristic of the approximation, rather than a statistical quirk, in that informational setting. The MAPE that arises when the approximation is based on cost pass-through rates is 0.193 and, given the average true price e ect with log-linear demand of 0.27, approximation is on average 71.5% from the true e ect. The approximation does not seem to provide consistently accurate predictions under the extreme curvature of the log-linear demand system.

Figure 2 provides scatter-plots of approximation against the true price e ects for logit demand, the AIDS and log-linear demand. The case of linear demand is omitted because approximation is exact in that setting. Printed on each scatter-plot is the 45-degree line; dots that appear above the line represent instances in which approximation over-predicts the true price e ect while dots under the line represent under-predictions. The qure clari es the relative accuracy of the approximation across demand systems and shows how using cost pass-through rather than direct knowledge of the second-order properties of demand (in the neighborhood of pre-merger equilibrium) does little to adversely a ect accuracy. Also notable is that approximation systematically over-predicts price increases when the true underlying demand system is logit. This pattern is strongest when approximation is calculated with known second derivatives and more attenuated when approximation is calculated with cost pass-through.

[Figure 2 about here.]

4.1.2 Relative accuracy of approximation and merger simulation

Table 3 tabulates the frequency with which approximation outperforms merger simulation (in the top panel) and provides the MAPEs that arise with approximation and merger simulation (in the bottom panel). Approximation is calculated assuming full knowledge of the second demand derivatives in the neighborhood of pre-merger equilibrium. Merger simulation is conducting alternately assuming logit demand, the AIDS, and linear demand.²⁶ We compare approximation to each of these merger simulations when the true underlying demand system is alternately logit, the AIDS, linear and log-linear. Given the design of the experiments, merger simulation returns the true price e ect only when the demand curvature assumption is correct. For example, linear demand merger simulation returns the true price e ect when the true underlying demand system is linear but not when it is logit.

[Table 3 about here.]

When the true underlying demand system is logit, the approximation is more accurate than AIDS simulation in 79.1 percent of the industries considered and more accurate than linear simulation in 90.3 percent of the industries considered. When true demand is the AIDS, the approximation is more accurate than merger simulations based on logit demand and linear demand in 94.8 percent and 87.4 percent of the industries considered, respectively. The approximation always outperforms misspeci ed merger simulation when true demand is linear because approximation is exact in that setting. When true demand is log-linear, approximation outperforms merger simulation based on logit demand, the AIDS, and linear demand in about half the considered industries. In most cases, approximation generates smaller MAPEs than misspeci ed merger simulation. Together, these comparisons showcase the potential usefulness of approximation in generating robust predictions when uncertainty exists regarding the true underlying demand schedule.

4.2 Accuracy with incomplete information

4.2.1 Prediction error with incomplete information

Table 4 summarizes the absolute prediction error that arises when the second derivatives of demand are unknown and when only incomplete information is available on the premerger cost pass-through. Four informational scenarios are considered: pre-merger cost

 26 We exclude log-linear merger simulations because the merger simulations often do not identify any post-merger equilibrium when the true underlying demand system is logit, the AIDS or linear.

pass-through that is available only for own costs, i.e., the o -diagonal elements are unknown (\Own Cost PTRs"); pre-merger cost pass-through that is available only for the merging

linear method of allocation industry pass-through outperforms simulation when demand is the AIDS, linear or log-linear but not when demand is logit. By contrast, the log-linear method of allocating industry pass-through outperforms simulation when demand is logit. Again, since the underlying demand system would be unknown in practical applications, these tabulations do not provide clear guidance on the most appropriate treatment of industry pass-through.

4.3 Extensions

4.3.1 Accuracy with mixed logit demand

Figure 4 provides scatter-plots of approximation against the true price e ects for logit and mixed logit demand systems. The approximation is calculated based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium. Two particular mixed logit models are considered, as developed in Section 3.2, based on two di erent price parameters:

e ect of 6.1 percentage points and depending on the precise method with approximation is conducted. The range is 3.6%-9.9% for AIDS and with log-linear it is 14%, setting aside the case of known second derivative which is again driven by outliers. Thus, under each demand system, average accuracy is improved relative to the full sample of randomly drawn industries (see Section 4.1.1). We conclude that approximation likely has enhanced usefulness when the counter-factual exercise when the perturbation to pre-merger equilibrium is less pronounced.

[Table 6 about here.]

4.3.3 Accuracy of simple approximation

In this section, we evaluate the numerical accuracy of \simple approximation," which is calculated by pre-multiw]

proposed by Froeb, Tschantz, and Werden (2005) and discussed in Section 2.4. When approximation exploits known second derivatives, approximation with the baseline rst order conditions is relatively more accurate for logit demand but relatively less accurate for the AIDS. This re
ects, in both instances, the unexpected result that the alternative rst order conditions systematically generate smaller price increases.²⁸ As developed above, approximation with the baseline rst order conditions overstates price increases for logit demand but not (often) for the AIDS, which leads approximation with the alternative rst order conditions to be accurate for logit demand and less accurate for the AIDS. A similar, though less pronounced, pattern characterizes the results when approximation exploits known cost pass-through rates and the horizontality assumption. Overall, the results indicate that neither method of approximation dominates the other in terms of accuracy, and we conclude that in some applications it could be appropriate to examine the results of both methods.

[Table 7 about here.]

5 Empirical Application

In this section, we demonstrate how the rst and second derivatives of demand can be estimated and subsequently used as inputs into the J-W approximation. The data employed characterize unit sales and average sales prices in a consumer products industry evaluated in the past by the Antitrust Division. Weekly observations on four popular brands are available for more than 40 cities over roughly a four year period.²⁹ Our objective is to obtain a second-order approximation to the unknown demand surface over the range of the data, which we interpret as representing the neighborhood of pre-merger equilibrium. To that end, we specify the following demand system:

$$
Q_i = i + \frac{\times}{i} P_j + \frac{\times \times}{i} P_i P_k + i;
$$
 (18)

where we have suppressed city and week subscripts on Q , P , and . The intercept term provides product-level xed e ects; suppressed are city and week xed e ects. This system

 28 Approximation with the alternative rst order conditions generate smaller price increases in 99.5% of the logit demand industries and 100% of the AIDS industries. This also holds true for log-linear demand, where the alternative rst order conditions generate smaller price increases in 93.3% of the randomly-drawn industries.

regression coe cients are unbiased provided that prices are uncorrelated with these shocks. Such as assumption would be warranted, for example, if prices are set before demand is realized in the market (e.g., see Hausman, Leonard, and Zona (1994); Weinberg and Hosken (2012)). Otherwise estimation plausibly could proceed with 2SLS, using prices in other cities/weeks as instruments, under the appropriate conditions.

Table 8 provides the demand elasticities and cost pass-through rates that are implied by the OLS regression coe cients.³³ The own-price elasticities of $3:89$, $1:50$, $1:56$, and 2:25 imply margins for the four products of 25%, 67%, 64% and 44%, respectively. All of the cross-price elasticities are positive, consistent with consumer substitution between the products in response to price uctuations. The own-cost pass-through rates well exceed 50% and therefore are consistent with convex demand schedules.³⁴ The cross-cost pass-through rates are positive, with one exception, consistent with prices being strategic complements in the sense of Bulow, Geanakoplos, and Klemperer (1985).

[Table 8 about here.]

Table 9 reports the results of approximation for a hypothetical merger of the rst two products. When calculated using the baseline rst order conditions and the estimated demand derivatives the predicted price changes are 36.5%, 41.1%, 27.3%, and 21.1% for the four products, respectively. Also shown are permutations based on dierent rst order conditions and dierent information sets (demand derivatives versus cost pass-through) and the results of simple approximation. The advantage of these price predictions relative to merger simulation is that they make use of the estimated second-order properties of demand rather than imposing these properties through a functional form assumption { that is, they more fully allow the variation that is present in the data to inform the counter-factual predictions. While the estimation of demand systems with exible second-order properties requires data with rich variation in prices, it is feasible that such data will become increasingly available to researchers and practitioners as rms collect, store and utilize data more e ciently.

[Table 9 about here.]

 33 We make use of equation 5 to convert the regression coe cients into cost pass-through.

 34 The implied convexity does not approach that of a log-linear demand system. In that system, the own-cost pass-through rate equalse= $(1 + e)$, where e is the own-price elasticity of demand. The own-cost pass-through rates that would arise with log-linear demand, given our elasticity estimates, are 1.31, 3.00, 2.70, and 1.85, respectively, for the four products examined.

6 Discussion

Our results indicate that approximation can be a useful complement to merger simulation when su cient data are available. Whether these complementarities are likely to be recognized by the antitrust community is unclear to us. Certainly the approximation has advantages. It provides a methodology that, in appropriate settings, can be more robust and data driven than merger simulation. Furthermore, approximation can be explained on an intuitive level simply as the product of upward pricing pressure and the appropriate measure of cost pass-through. We see the downside, relative to merger simulation, as relating primarily to economists' ability to discern cost pass-through or local demand curvature in the course of merger investigations. There is also uncertainty as to whether the derived theoretical relationship between local demand curvature and cost pass-through extends to real-world settings, or whether rms more typically apply rules-of-thumb to quide pass-through behavior. We hope that our work proves helpful to the antitrust community in identifying and evaluating these tradeo s.

Our work also has implications for industrial economics research. In particular, one standard methodology employs model-based simulations to evaluate counter-factual scenarios that are outside the range of the available data. The structural parameters of the models typically are estimated to bring the implied rst derivatives of demand close to those implied by the data. Our work highlights the importance of the s econterol vatives in driving the outcomes of simulations. Further, the numerical results we develop indicate the potential value of approximation as an alternative methodology that is applicable to some of the counter-factual scenarios of interest in industrial economics. Our results also could motivate econometric research into how to best to obtain second-order approximations to the unknown demand surface, using non-parametric regression or other techniques. The value of such research likely is enhanced by the fact that researchers increasingly have access to data with rich variation that could be exploited in estimation.

Several topics surrounding approximation remain unexplored. We provide a partial list of potential research questions here with future work in mind. First, under what theoretical conditions does approximation overstate and understate the price e ects of mergers? Our numerical results indicate that approximation overstates price increases when true underlying demand schedule is logit but this relationship is ambiguous when the underlying demand schedule is instead almost ideal, log-linear or mixed logit. Research that discerns how the speci c theoretical properties of these demand systems a ect the performance of approximation would have value. Second, what are the most accurate ways to translate

information that may be available to researchers (e.g., industry pass-through) into the cost pass-through or demand curvature information required for approximation? We have proposed a number of possibilities but have not addressed the question systematically. Finally, how accurate is approximation under di erent equilibrium concepts? We have focused solely on Nash-Bertrand competition but both upward pricing pressure and rst order approximation are generalizable and can accommodate, for example, equilibria based on Nash-Cournot competition and consistent conjectures.

References

- Ashenfelter, O., D. Ashmore, J. B. Baker, and S.-M. McKernan (1998). Identifying the $rm-speci$ c cost pass-through rate. FT C Wor king Paper
- Berry, S., J. Levinsohn, and A. Pakes (1995, July). Automobile prices in market equilibrium. Econometr (4) , 347 (890) .
- Besanko, D., J.-P. Dube, and S. Gupta (2005, Winter). Own-brand and cross-brand retail pass-through. Marketing Sc1)e1233{437.
- Bulow, J. I., J. D. Geanakoplos, and P. D. Klemperer (1985). Multimarket oligopoly: Strategic substitutes and complements. Journal of Politica(3), $\frac{1}{2}$ 511.
- Carlton, D. W. (2010). Revising the horizontal merger guidelines. Journal of Competition La w, a nd Economics
- Christensen, L., D. Jorgenson, and L. Lau (1975, June). Transcendental logarithmic utility functions. American Economic Rev383.w 5
- Crooke, P., L. Froeb, S. Tschantz, and G. J. Werden (1999). The eects of assumed demand form on simulated post-merger equilibria. Review of Industrial Orobja nization 217.
- Deaton, A. and J. Muellbauer (1980). An almost ideal demand system. The American E conomic Rev (3) e pp (2) 312{326.
- Epstein, R. J. and D. L. Rubinfeld (1999). Merger simulation: A simplied approach with new applications. Antitrust Law Journal 693{929.1 69
- Farrell, J. and C. Shapiro (2010a). Antitrust evaluation of horizontal mergers: An economic alternative to market de nition. BE. Journal of Theoretical Economic cies and Perspiectives 0
- Farrell, J. and C. Shapiro (2010b). Recapture, pass-through, and market de nition. Antitrust Law Jo (3) r 58π { 160 .
- Froeb, L., S. Tschantz, and G. J. Werden (2005). Pass through rates and the price e ects of mergers. International Journal of Indu^{rg} 3 than 0 or ganization 23 and 23 and 23 and 23 and 23 σ
- Hausman, J., G. K. Leonard, and J. D. Zona (1994). Competitive analysis with di erentiated products. Annales DEconomie et de \$1, 150 (180.1 que 3

Ja e, S. and E. G. Weyl (2010). Linear demand systems are inconsistent with discrete choicew. B. E. Journal of Theoretical Economics (dvances) $\mathbf 0$

Ja e, S. and E. G. Weyl (2012). The rst order approach to merger analysis.

Kominers, S. and C. Shapiro (2010). Second-order critical loss analysis.

- Miller, N. H., M. Remer, and G. Sheu (2012). Using cost pass-through to calibrate demand.
- Nevo, A. (2000). Mergers with dierentiated products: The case of the ready-to-eat cereal industry. The RAND Journal of Eco \hat{a}), ppp. \hat{a} 421.
- Nevo, A. (2001). Measuring market power in the ready-to-eat cereal industry. Economet r i ca (2 $\frac{1}{2}$) pp. 307{342.
- Nevo, A. and M. Whinston (2010, Spring). Taking the dogma out of econometrics: Structural modeling and credible inference. Jour nal of Economic $\mathcal{P}(42.5 \text{ pecti} \text{ves})$
- Peters, C. (2006, October). Evaluating the performance of merger simulation: Evidence from the u.s. airline industry. Jour nall of Law $\mathcal{E} \text{co}(\hat{a})$ of \mathcal{E}
- Schmalensee, R. (2009). Should new merger guidelines give upp market de nition? CPI Antitrust Chro (1) . cle 2
- Shapiro, C. (1996, Spring). Mergers with dierentiated products. Antitrus(2), $\mathfrak{D}3\{30$.
- Weinberg, M. C. (2011). More evidence on the performance of merger simulations. American Economic Review (Papers a (6)), Biffoceedings) 0
- Weinberg, M. C. and D. Hosken (2012). Evidence on the accuracy of merger simulations.
- Werden, G. J. and L. M. Froeb (2008). Handbook of Antitrust table bloomics lateral Competitive E ects of Horizontal Mergers, pp. 43{104. MIT Press.
- Weyl, E. G. and M. Fabinger (2012, October). Pass-through as an economic tool.
- Willig, R. (2011). Unilateral competitive e ects of mergers: Upward pricing pressure, product quality, and other extensions. Review of Industrial \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{P} \mathbb{Q} \mathbb{Q} 38.

Appendix

A Merger Pass-Through De ned

In this appendix, we provide an expression for the Jacobian of $h(P)$, which can be used to construct merger pass-through as de ned by Ja e and Weyl (2012). Using the de nition $h(P)$ f (P) + $g(P)$, we have

$$
\frac{\mathcal{Q} \mathfrak{h}(\mathsf{P})}{\mathcal{Q} \mathsf{P}} = \frac{\mathcal{Q} \mathfrak{f}(\mathsf{P})}{\mathcal{Q} \mathsf{P}} + \frac{\mathcal{Q} \mathfrak{f}(\mathsf{P})}{\mathcal{Q} \mathsf{P}}.
$$
\n(21)

The Jacobian of $f(P)$ can be written as:

$$
\frac{\mathbf{\omega}(\mathbf{P})}{\mathbf{\omega}\mathbf{P}} = \begin{cases} 2 & \frac{\mathbf{\omega}_{\mathsf{h}(\mathbf{P})}}{\mathbf{\omega}_{\mathsf{p}}} & \cdots & \frac{\mathbf{\omega}_{\mathsf{h}(\mathsf{P})}}{\mathbf{\omega}_{\mathsf{p}}} & \frac{3}{7} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\mathbf{\omega}_{\mathsf{h}(\mathsf{P})}}{\mathbf{\omega}_{\mathsf{p}}} & \cdots & \frac{\mathbf{\omega}_{\mathsf{h}(\mathsf{P})}}{\mathbf{\omega}_{\mathsf{p}}} \end{cases} (22)
$$

where N is the total number of products and J is the number of rms. The vector P includes all prices; we use lower case to refer to the prices of individual products, so that p_n represents the price of product n. In the case that product n is sold by rm i,

$$
\frac{\mathscr{Q}f(P)}{\mathscr{Q}p} = \begin{array}{c} 2 & 3 \\ 6 & 7 \\ 6 & 7 \\ 6 & 1 & 7 \\ 4 & 0 & 5 \end{array} \quad \frac{\mathscr{Q}Q^{T}}{\mathscr{Q}p} \quad \frac{1}{\mathscr{Q}P\mathscr{Q}p} \quad \frac{\mathscr{Q}Q^{T}}{\mathscr{Q}P\mathscr{Q}p} \quad \frac{\mathscr{Q}Q^{T}}{\mathscr{Q}P} \quad \frac{\mathscr{Q}Q^{T}}{\mathscr{Q}P} \quad \frac{\mathscr{Q}Q^{T}}{\mathscr{Q}P} \quad \frac{\mathscr{Q}Q^{T}}{\mathscr{Q}P} \quad ; \qquad (23)
$$

where Q_i and P_i are vectors representing the quantities and prices respectively of the products owned by rm i, and the initial vector of constants has a 1 in the rm-speci c index of the product n. For example, if product 5 is the third product of rm 2, then the 1 will be in the 3rd index position when calculating $@f(P)=@p$ If product n is not sold by rm i, the vector of constants is θ , and thus

 $\overline{\mu}$

$$
\frac{\mathcal{Q}f(P)}{\mathcal{Q}p} = \frac{\mathcal{Q}Q^{T}}{\mathcal{Q}P}^{-1} \frac{\mathcal{Q}Q_{i}}{\mathcal{Q}P\mathcal{Q}p}^{T} \frac{\mathcal{Q}Q^{T}}{\mathcal{Q}P}^{-1}Q_{i} \frac{\mathcal{Q}Q^{T}}{\mathcal{Q}P}^{-1} \frac{\mathcal{Q}Q}{\mathcal{Q}p} : \qquad (24)
$$

The matrix $\mathcal{Q}(\mathbf{P}) = \mathcal{Q}$ Pcan be decomposed in a similar manner:

$$
\frac{2}{\omega g(P)} \dots \frac{\omega g(P)}{\omega R} \frac{3}{7}
$$
\n
$$
\frac{2}{\omega g} \frac{\omega g(P)}{\omega R} \dots \frac{\omega g(P)}{\omega R} \frac{7}{7}
$$
\n
$$
\frac{2}{\omega g} \frac{\omega g(P)}{\omega R} \dots \frac{\omega g(P)}{\omega R} \frac{7}{7}
$$
\n
$$
\frac{7}{7} \dots \frac{7}{7}
$$
\n
$$
\frac
$$

where N is the number of products and K is the number of merging rms. Notice that $\mathcal{Q}(\mathbf{P})$ = \mathcal{Q} Pincludes zeros for non-merging rms, because the merger does not create opportunity costs for these rms. In the case that product **n** is sold by a rm merging with rm i (this does not include rm i itself),

The matrix
$$
\mathbf{Q} \cdot \mathbf{P}
$$
 = $\mathbf{Q} \cdot \mathbf{P}$ and $\mathbf{Q} \cdot \mathbf{P}$ is the number of products and **K** is the number of merging $\frac{2}{\mathbf{Q}} \cdot \mathbf{Q} \cdot \mathbf{P}$ and $\mathbf{Q} \cdot \mathbf{P}$.
\n $\mathbf{Q} \cdot \mathbf{P}$ = $\begin{pmatrix} \frac{\partial}{\partial P} & \frac{\partial}{\partial P} & \frac{\partial}{\partial P} & \frac{\partial}{\partial P} \\ \frac{\partial}{\partial P} & \frac{\partial}{\partial P} & \frac{\partial}{\partial P} & \frac{\partial}{\partial P} \\ \frac{\partial}{\partial P} & \frac{\partial}{\partial P} & \frac{\partial}{\partial P} & \frac{\partial}{\partial P} \end{pmatrix}$ (25)
\n $\mathbf{Q} \cdot \mathbf{P}$ is the number of products and **K** is the number of merging rms. Notice that $\mathbf{Q} \cdot \mathbf{P}$ = \mathbf{Q} .
\n $\mathbf{Q} \cdot \mathbf{P}$ = \mathbf{Q} .
\n $\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{P}$ = $\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{P}$ and $\mathbf{Q} \cdot \mathbf{P}$ is the number of integers $\mathbf{Q} \cdot \mathbf{P}$ and $\mathbf{Q} \cdot \mathbf{P}$ is the number of integers $\mathbf{Q} \cdot \mathbf{P}$ and $\mathbf{Q} \cdot \mathbf{P}$ is the number of integers $\mathbf{Q} \cdot \mathbf{P}$ and $\mathbf{Q} \cdot \mathbf{P}$ is the number of products and **K** is the number of merging rms. Notice that $\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{P}$ is the number of products and **K** is the number of merging rms. Notice that $\mathbf{Q} \cdot \mathbf{Q} \cdot \mathbf{P}$ is the number of periods. The sum of $\mathbf{Q} \cdot \mathbf{P}$ is the number of periods. The sum of $\mathbf{Q} \cdot \mathbf{P}$ is the number of periods. The sum of $\mathbf{Q} \cdot \mathbf{P$

where ${\sf Q}_{\rm j}$, ${\sf P}_{\rm j}$, and ${\sf C}_{\rm j}$ are vectors of the quantities, prices, and marginal costs respectively of products sold by rms merging with rm i, and the vector of 1s and 0s has a 1 in the merging rm's rm-speci c index of the product n. For example, if product 5 is the third product of rm 2, and rm 2 is merging with rm 1, then the 1 will be in the $3rd$ index position when calculating $\mathcal{Q}(\mathbf{p})=\mathcal{Q}(\mathbf{p})$ It is an important distinction that { supposing there are more than two merging parties { the index j refers to all of the merging parties' products, excluding rm i's products. If product n is not sold by any rm merging with rm i (including a product sold by rm i),

$$
\mathcal{Q}(P)
$$

n

 $\mathcal{L}_{\mathcal{L}}$

Figure 1: Graphical Illustration of First Order Approximation

 \circ

True Change in Price

Figure 2: Prediction Error with Complete Information.

Notes: The gure provides scatter-plots of approximation against the true price e ect for logit demand, the AIDS and loglinear demand. The case of linear demand is omitted because approximation is exact in that setting. Approximations are calculated alternately based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium (\Known 2nd Derivatives"); based on full knowledge of pre-merger cost pass-through and the horizontality assumption (\PTRs with Horizontality"); and based on full knowledge of pre-merger cost pass-through and the assumption that derivatives of the form $@^2Q_i = @P@R$ equal zero (\PTRs with Zeros").

35

True Change in Price

Figure 3: Prediction Error with Incomplete Information

Notes: The gure provides scatter-plots of approximation against the true price e ect for logit demand, the AIDS, linear demand and log-linear demand. Four informational scenarios are considered: pre-merger cost pass-through that is available only for own costs (\Own Cost PTRs"); pre-merger cost pass-through that is available only for the merging rms (\Merging

Figure 4: Prediction Error with Complete Information { Logit and Mixed Logit Demand Notes: The gure provides scatter-plots of approximation against the true price eect for logit and mixed logit demand. The approximation is calculated based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium.

Figure 5: Prediction Error with Simple Approximation

Notes: The gure provides scatter-plots of simple approximation against the true price e ect for logit demand, the AIDS, linear demand and log-linear demand. The approximation is calculated based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium.

Figure 6: Prices and Unit Sales in a Representative City.

Notes: The gure provides a scatter-plot of the weekly average sales price and unit sales for one product in a representative city. To protect the con dentiality of the data, a small number of outliers have been omitted and both average sales price and unit sales have been scaled by an unspeci ed constant and perturbed additively by a uniformly distributed random variable.

Table 1: Summary Statistics

Notes: Summary statistics are based on 300 randomly-drawn industries. The merger simulation results show changes in rm 1's price, conditional on that change being under 50%. With logit demand, 242 of the 300 randomly-drawn industries produce such a price change. With the AIDS, linear demand, and log-linear demand, 191, 190, and 45 industries produce such a price change, respectively.

Table 2: Absolute Prediction Error with Complete Information

Notes: The table provides summary statistics regarding the absolute prediction errors of approximation. Absolute prediction error is de ned by the absolute value teetprob approximatthete

Table 3: Approximation with Complete Information Versus Merger Simulation

Panel A: Frequency with which Approximation Outperforms Simulation

	Logit Demand				AIDS		
	Mean	5th pctile	95th pctile	Mean	5th pctile	95th pctile	
Own Cost PTRs	0.096	0.013	0.260	0.094	0.007	0.288	
Merging Firms' PTRs	0.019	0.001	0.058	0.018	0.002	0.071	
Ind. PTRs { Adj.-Linear	0.266	0.003	1.107	0.025	0.001	0.106	
Ind. PTRs { Log-Linear	0.052	0.005	0.169	0.067	0.001	0.246	
		Linear Demand		Log-linear Demand			
	Mean	5th pctile	95th pctile	Mean	5th pctile	95th pctile	
Own Cost PTRs	0.128	0.017	0.330	0.193	0.006	0.395	
Merging Firms' PTRs	0.025	0.003	0.080	0.193	0.006	0.395	
Ind. PTRs { Adj.-Linear	Ω	$\overline{0}$	0	0.142	0.007	0.320	
Ind. PTRs { Log-Linear	0.078	0.004	0.259	0.193	0.006	0.395	

Table 4: Absolute Prediction Errors with Incomplete Information

Notes: The table provides summary statistics regarding the absolute prediction errors of approximation. Separate statistics are shown for logit demand, the AIDS, linear demand and log-linear demand. Observations are included only when the true price e ect does not exceed 50 percent. Four informational scenarios are considered: pre-merger cost pass-through that is available only for own costs, i.e., the o-diagonal elements are unknown (\Own Cost PTRs"); pre-merger cost pass-through that is available only for the merging rms (\Merging Firms' PTRs"); industry cost pass-through that is apportioned using the adjusted-linear method (\Ind. PTRs { Adj.-Linear"); and industry cost pass-through that is apportioned using the log-linear method (\Ind. PTRs { Log-Linear").

Table 6: Mean Absolute Prediction Error for Small Price Changes

			Logit AIDS Linear Log-Linear
Known Second Derivatives 0.016 0.002			4.614
PTRs with Horizontality	$0.010 \quad 0.005$		0.091
PTRs with Zeros	0.010 0.004		0.091

Notes: The table provides the mean absolute prediction errors of approximation that arise when the true price e ect does not exceed 10%. Separate statistics are shown for logit demand, the AIDS, linear demand and log-linear demand. The approximation is calculated alternately based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium (\Known Second Derivatives"); based on full knowledge of pre-merger cost pass-through and the horizontality assumption (\PTRs

Logit AIDS Linear Log-Linear Known Second Deriva tives Baseline FOC 0.084 0.008 0 1.072 Alternative FOC 0.061 0.103 0 0.150 PTRs with Horizontality Baseline FOC 0.082 0.026 0 0.193 Alternative FOC 0.084 0.054 0 0.176

Notes: The table provides the mean absolute prediction errors that arise with both the baseline rst order conditions and with the alternative rst order conditions. Separate statistics are shown for logit demand, the AIDS, linear demand and log-linear demand. Observations are included only when the true price e ect does not exceed 50 percent. The approximation is calculated alternately based on full knowledge of the second-order properties of demand in neighborhood of pre-merger equilibrium (\Known Second Derivatives") and based on full knowledge of pre-merger cost pass-through with the horizontality assumption(\PTRs with Horizontality").

Table 7: Mean Absolute Prediction Error with Alternative FOCs

Notes: The elasticities and cost pass-through rates are inferred from OLS regression coe cients. In Panel A, the top number in the second column is the elasticity of demand for product 1 with respect to the price of product 2, and the remaining numbers are calculated accordingly. In Panel B, the top number in the second column is the pass-through rate of product 1 with respect to the costs of product 2, and again the remaining numbers are calculated accordingly.

Table 7. Tippi onling tion incourts for inici gen or intoducts in and Z								
	Product 1	Product 2 Product 3		Product 4				
Known ^d 2Derivatives								
Baseline FOC	36.5%	41.1%	27.3%	21.1%				
Alternative FOC	28.5%	31.0%	21.2%	16.2%				
PT Rs with Horizontality								
Baseline FOC	57.0%	51.1%	40.9%	29.7%				
Alternative FOC	37.3%	32.8%	26.7%	19.3%				
PT Rs wi th Zeros								
Baseline FOC	41.1%	36.5%	29.4%	21.3%				
Alternative FOC	29.8%	26.0%	21.2%	15.3%				
Simple Approximation	26.0%	20.3%	18.2%	12.8%				

Table 9: Approximation Results for Merger of Products 1 and 2

Notes: Approximation is based on the estimated demand derivatives and either uses these derivatives directly (\Known 2nd Derivatives") or uses the implied cost pass-through rate matrix.