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Abstract

By regulating how �rms collect, store, and use data, privacy laws may change the

role of data in production and alter �rm demand for computation and data storage.

We study how �rms respond to privacy laws in the context of the EU's General Data

Protection Regulation (GDPR) by using seven years of con�dential data from one of

the world's largest cloud-computing providers. Our di�erence-in-di�erence estimates

indicate that, in response to the GDPR, EU �rms decreased data storage by 26% and

processing by 15% relative to comparable US �rms, becoming less �data-intensive.� To

estimate the costs of the GDPR for production, we propose and estimate an �informa-

tion� production function framework where data and computation serve as inputs to

production. We �nd that data and computation are strong complements in production

and that �rm responses are consistent with the GDPR representing a 20% increase in

the cost of data on average, with smaller �rms bearing higher cost increases than larger

ones. The production cost of information increased by 4% on average, with higher

costs in more data-intensive industries.
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1 Introduction

In the information age, the economy's production of goods and services increasingly relies

on the processing of data (Agrawal et al., 2018; Goldfarb and Tucker, 2019). Since some of

the most valuable data concerns personal information on human subjects, its growing use

has led to new policy attention and regulation. One of the most in�uential privacy policies

is the European General Data Protection Regulation (GDPR), which was enacted in 2016

and a�ected more than 20 million �rms across dozens of countries (GDPR.eu, 2019). Many

countries have since followed this example�as of early 2022, 157 countries had enacted

legislation to secure data and privacy (Greenleaf, 2022).

While these privacy laws help harmonize and improve data collection practices, they

can also be costly for �rms, potentially a�ecting their input choices and production de-

cisions. For example, privacy laws may generate a wedge between the marginal product

of data and its (perceived) marginal cost, leading �rms to substitute away from data with

other inputs. Variations in these wedges across �rms can result in input misallocation and

aggregate productivity losses (Hsieh and Klenow, 2009; Restuccia and Rogerson, 2017).

Given the increasing role of data in �rm production, understanding how privacy regula-

tions a�ect �rms' input decisions is therefore of the utmost importance.

Large-scale empirical evidence of how privacy laws a�ect �rm data decisions, the

key margin targeted by privacy laws, is scant, as studying this question is complicated

for a number of reasons (Johnson, 2022). First, �rms' data and computation usage are

inherently di�cult to observe, as standard �rm datasets do not provide information on

these measures. Second, there is no uni�ed framework for analyzing the role of data in

�rm production. Any such framework needs to be parsimonious while having enough

�exibility to allow the impact of privacy laws to depend on the importance of data and

computation for �rms.

In this paper, we make progress on these fronts by studying how the GDPR a�ected

�rms' computation and data choices using con�dential data from one of the largest global

cloud-computing providers. The cloud is an ideal setting for our question because it allows

us to observe high-frequency �rm decisions about data and computation usage over a six-

year horizon from 2015-2021. Our data contains detailed information on the monthly

cloud usage of hundreds of thousands of �rms and comprises hundreds of zettabytes (i.e.,

hundreds of millionsof terabytes) of data and billions of core-hours. 1 This data spans every

top-level industry, from manufacturing to �nance, and enables us to analyze the impacts

of privacy regulations beyond the digital economy.

1We omit precise numbers to avoid disclosing potentially business-sensitive information.
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We �rst apply this data toward studying the direct impact of the GDPR on �rm data

and computation choices. In our �rst set of analyses, we compare domestic �rms in

the European Union (EU) subject to the GDPR to comparable non-treated same-industry

�rms in the US in a di�erence-in-di�erences approach. In the second part of the paper, we



regulatory stringency across EU countries as the GDPR is enforced by individual EU

countries. Although the di�erences are not statistically signi�cant, our estimates suggest

that �rms in countries with stricter regulators respond by decreasing their storage and

computation more than those in countries with more lenient ones.

While our reduced form �ndings provide direct evidence of the impact of privacy laws

on �rms, they only o�er a partial understanding of the associated economic costs. Moti-

vated by this, we propose and estimate a production function model where �rms use data

and computation to produce �information� through a constant elasticity of substitution

(CES) function. This production function includes two main parameters: (i) the �rm-level

compute (augmenting) productivity, which determines relative factor intensities of compu-

tation and data (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2020) and (ii)

the elasticity of substitutionbetween computation and data, which determines how �rms

respond to changes in factor prices (Hicks, 1932). Our model is intentionally agnostic

about how information enters the �nal production function, accommodating several im-

portant use cases of data, such as being an intermediate input in the production function

and augmenting �rm productivity. This model links the theoretical literature of data in

the production function (e.g., Jones and Tonetti, 2020; Farboodi and Veldkamp, 2022) with

empirical estimates and emphasizes the role of computation in �rm production.

Our information production model provides an input demand function that links �rms'

optimal data and computation choices to input prices and model parameters. We estimate

this input demand function industry-by-industry to recover the elasticity of substitution

(using pre-GDPR variation) and regulatory wedges (using post-GDPR variation). 3 We

estimate that data and computation are strong complements in production, with some

heterogeneity across industries. The average elasticity of substitution between storage

and computation is 0.41, with estimates ranging from 0.44 (non-software services) to 0.34

(manufacturing). This strong complementarity suggests that �rms cannot easily substitute

toward computation when faced with increased data costs. To our knowledge, this is the

�rst estimate of the elasticity of substitution between di�erent data inputs.

To recover the distortion generated by the GDPR, we model it as an unobserved wedge

between the marginal cost �rms must pay to store data in the cloud and the total marginal

cost that includes GDPR compliance costs. This wedge arises from various sources, in-

cluding penalties in case of breaches, higher data security requirements, and the need for

detailed data records. We estimate �rm-speci�c wedges by utilizing post-GDPR data and

attributing to GDPR-induced wedges the change in input choices unexplained by changes

3We also account for potential sources of endogeneity in prices by using a shift-share instrument, which we
describe in further detail in Section 5.3.1.
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in input prices in the EU (relative to the US), or by changes in the elasticity of substitution.

Our production function analysis suggests that the GDPR made data storage 20% more

costly for �rms on average. The e�ect is the largest in the software sector (24%), followed

by manufacturing (18%), and services (18%). These results suggest that �rms in data-



us to draw more generalizable conclusions about �rms' data uses, the trade-o� is that we



non-GDPR countries.5 Johnson (2022) provides a comprehensive survey of this literature.6

While our paper builds on an identi�cation strategy similar to some of these GDPR

papers, it is di�erent in two main aspects. First, because of the richness of our data, we

directly study �rms' data and computation decisions, a margin that is the key target of

regulation. In particular, our data is well-suited for studying �rm adjustments on the

intensive margin, and the heterogeneity of our results across industries. Second, we take

a production function approach and structurally estimate its parameters. Crucially, this

approach allows us to estimate the role of data and computation in production and to

calculate the cost of the GDPR for �rms.

The second body of literature to which we contribute is the set of papers that include

data as an input to production. The theoretical literature on data has proposed ways in

which data enters production, mostly including it as an additional input to production.

Jones and Tonetti (2020) model data as a non-rival input that is generated as a byproduct

of production from all �rms in the economy. Farboodi and Veldkamp (2022) model data as

a productivity-enhancing input that helps �rms accurately predict future outcomes. We

complement this literature by developing and estimating a �rm production framework

with data, providing empirical estimates on how �rms combine data and computation.

Third, our paper is related to the literature on misallocation, which documents large

di�erences in the e�ciency of factor allocations resulting from various frictions (Restuccia

and Rogerson, 2008; Hsieh and Klenow, 2009). Most of this literature abstracts from the

origin of frictions, treating them as model primitives. In contrast, we study an important

regulatory change that could impacts �rms' input allocation. We employ a similar identi�-



2 Institutional Setting

This section �rst discusses the relevant details of the GDPR. We then describe cloud

computing technology, the setting for our primary data source in this paper.

2.1 The European General Data Protection Regulation

There is perhaps no policy more important in the modern privacy landscape than the

GDPR. As Johnson (2022) notes, "In many ways, the GDPR set the privacy regulation

agenda globally.� As such, understanding the consequences of the GDPR is vital not only

because of its direct impacts on �rms but because of its crucial role in shaping privacy

laws. In this section, we describe the key features of this policy and how they a�ect �rms.

The GDPR is a set of rules that govern the collection, use, and storage of personal

data belonging to individuals within the EU. It was enacted in April 2016 and came into

force in May 2018. By consolidating and enhancing existing privacy provisions, the GDPR

introduced a harmonized approach to privacy regulations across the EU. 7We provide a

detailed description of the changes required for �rms after GDPR in Appendix B.1 and

summarize its most important characteristics below.

There are two aspects of GDPR that are important for our paper and govern our ap-

proach to modeling it. First, GDPR takes a data protection approach rather than a consumer

protection approach (Jones and Kaminski, 2020).8 A data protection approach imposes a

set of costly responsibilities on �rms to protect data, in addition to a substantive system of

individual rights. This increases the cost of handling data for �rms. Second, GDPR takes a

risk-based approach to data protection (Hustinx, 2013; Gellert, 2018). For example, Article

25 (Data Protection by Design and by Default) uses phrases such as "implement appropri-

ate technical and organizational measures," "implement data-protection principles," and

"in an e�ective manner." This risk-based approach makes costs heterogeneous across �rms

based on the sensitivity of data and �rms' risk preferences.

The GDPR applies whenever the �rm (�data controller�) that controls the data is

established in the EU or whenever the individuals (�data subjects�) whose data is collected

are located in the EU, regardless of their citizenship or residence (Article 3). Under the

GDPR, personal data is de�ned broadly to include any information that can be used to

identify an individual either directly or indirectly (Article 4). This includes information

such as name, address, email address, internet protocol (IP) address, and other identifying

7Unlike the GDPR, which is directly binding and applicable across the European Union, the preceding
Directive 95/46/EC had to be incorporated into each member state's national laws to take e�ect, leading to
variation in its implementation across di�erent jurisdictions.

8Consumer protection approach is the dominant approach in the US (Boyne, 2018).
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characteristics. It applies to all personal data, regardless of whether it is in a client or

employee context. Therefore, even business-to-business �rms are subject to GDPR.

From the �rm perspective, the GDPR primarily increased the cost of collecting and stor-

ing data by imposing costly responsibilities on �rms. These include keeping a record of

processing activities (Article 30), designating a data protection o�cer (Article 37), prepar-

ing data protection impact assessments (Article 35), implementing appropriate technical

and organizational measures for data security (Article 32), providing timely noti�cations

in case of data breaches (Article 33), executing consumers' requests for data transfer, era-

sure, or recti�cation (Article 14-21), and paying hefty penalties in case of data breaches

(Article 83). Firms also must have a legal basis for processing personal data.9

The cost of complying with the GDPR can vary signi�cantly depending on the size and

complexity of an organization. There are no o�cial statistics, but most survey evidence

suggests that complying with the GDPR is costly for �rms. The estimates range from

an average of $3 million (Hughes and Saverice-Rohan, 2018) and $5.5 million (Ponemon

Institute, 2017) to $13.2 million (Ponemon Institute, 2019) depending on the composition of

surveyed �rms. The survey evidence indicates that a large percentage of the costs (between

one-�fth and one-half) are labor costs, followed by technology, outside consulting, and

internal training (Ponemon Institute, 2019; Hughes and Saverice-Rohan, 2019).

The changes mandated by the GDPR entail both �xed and marginal costs. For example,

the cost of having a data protection o�cer may not scale with data size, so the latter could

be considered mostly a �xed cost. On the other hand, the costs of handling customers'

access or deletion requests, the liability in case of a data breach, and keeping data in a

more secure environment would increase with data and �rm size. As such, it may be more

sensible to interpret these kinds of costs as changes to the marginal costs. We provide

a detailed classi�cation of GDPR costs into these �xed and variable cost categories and

present corresponding survey evidence in Appendix B.2.

In addition to these direct costs, organizations may also incur indirect costs such as

cybersecurity insurance or penalties if they are found to be non-compliant or in the case of

data leaks.10Non-compliant �rms may face �nes of up to 4% of an organization's annual

globalrevenue or ¿20 million (whichever is greater). We scrape publicly available GDPR

9Contrary to popular belief, consent is not the only appropriate legal basis that �rms may use to process
personal data�consent, contractual necessity, legal obligation, vital interests, public task, and legitimate
business interest may all serve as a basis for processing data (Article 6). However, �rms are required to
identify which legal basis they are using to process personal data.

10There are likely additional costs beyond the direct �nancial costs of compliance, including opportunity
costs associated with diverting existing employees towards GDPR compliance and expenses related to the
disruption caused by operational changes.
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Figure 1: Publicly Reported GDPR Fines

Notes:The �gure presents the distribution of 1,730 publicly available GDPR �nes, noting that not all GDPR
�nes are made public. The data collection process is described in Section 3 and we provide greater detail for
the data in Appendix B.3. Fines are presented in unde�ated nominal terms ( ¿), and �ve examples from the
data have been highlighted: a restaurant, a jewelry manufacturer, Google, Amazon, and Meta.

�ne data (which we describe detail in Appendix B.3) from a database maintained by CMS,

an international law �rm. 11In Figure 1, we provide the size distribution of these GDPR

�nes. 12We note two key features of these �nes. First, the distribution of �ne sizes implies

that enforcement is not limited to large violations: 25% of the �nes have been under ¿2,000.

Many of these have been levied on small businesses. Second, the GDPR applies to a much

broader set of businesses and industries than just software and technology �rms. Figure

1 highlights some of these non-software cases, and restaurants and manufacturers appear

not infrequently in our dataset.

2.2 Our Setting: Cloud Technology



Cloud computing provides scalable IT resources on demand over the internet. Ac-

cording to the National Institute of Standards and Technology (Mell et al., 2011), cloud

computing is de�ned as �a model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of con�gurable computing resources (e.g., networks, servers,

storage, applications, and services) that can be rapidly provisioned and released with

minimal management e�ort or service provider interaction.� 13Cloud computing has ex-

perienced extremely rapid growth since its introduction. 14According to a 2020 survey by

O'Reilly, 88% of respondents used cloud computing in some form. 15

We focus on the two primary cloud services provided by our data partner: storage and

computation. Storage services allow users to store data and applications in a data center

location, which can be accessed over the internet. Computation services allow users to

run applications and perform computations in a virtual machine (VM). Cloud providers

o�er a variety of VM types with di�erent speci�cations in terms of CPU, memory, and

upload and download speed. Users choose the VM type that best meets the needs of their

workload (Kilcioglu et al., 2017).

Firms could use storage and computing services in multiple parts of their production

process. For example, a manufacturing company that produces goods in multiple loca-

tions may use VMs to ensure that all of its information is available everywhere (and to

monitor inventories, value chains, etc.). Firms may also decide to use storage without

using computing services, e.g., a newspaper may decide to host all of the photographs

that will be displayed on its website online and provision them directly without the need

for computing. However, it is rare to observe �rms using computation without also using

storage�e.g., some non-data simulations may �t these cases. Firms may also add other

cloud services (e.g., analytics, security) in conjunction with their computing and storage

needs.16

From the researchers' point of view, the existence and ubiquity of the cloud provides

important advantages over traditional IT. It is possible to aggregate data from tens of

thousands of �rms because cloud computing is typically provided by large third-party

�rms. Moreover, cloud providers keep detailed records of their users' activity for billing

purposes, allowing us to track usage consistently over time.

13Cloud computing resources can be categorized into three forms: Infrastructure as a Service, Platform as a
Service, and Software as a Service.

14See Jin and McElheran (2017); DeStefano et al. (2020); Jin (2022) for recent studies on �rm's cloud adoption
and the impacts of cloud technology on �rms.

15Seehttps://www.oreilly.com/radar/cloud-adoption-in-2020/ .
16See several case studies of how �rms in di�erent industries use cloud computing at https://aws.amazon.

com/solutions/case-studies/ , https://azure.microsoft.com/en-us/resources/customer-stories/ ,
and https://cloud.google.com/customers .
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Despite these advantages, there are important limitations to using data from cloud

computing. First, many �rms use a mix of cloud computing and traditional IT, especially

during the transition to the cloud. In such cases, we can only observe �rm data in the cloud

and not from their on-site hardware, which may limit our analysis if the GDPR changes

the composition of cloud and on-site data. Second, it is common for �rms to use cloud

services from multiple providers, known as multi-cloud. For these �rms, a reduction in

cloud technology usage from one provider could indicate substitution to another provider.

We take these concerns seriously and provide several robustness checks in our empirical

strategy.

3 Data

This section describes the main datasets used in the paper and presents basic summary

statistics. We leave the exact data construction details to Appendix C.

3.1 Cloud Computing Data (2015-2021)

We obtain information through one of the largest cloud technology providers. Using this

data, we observe monthly-level usage information of the universe of their customers for

all cloud services between 2015 and 2021. These services include hardware services, such

as storage, computation, and networking, as well as some software services.17 For each

service, we observe its description, the number of units purchased, the location of the data

center, the date, and the price paid. Therefore, we have both the physical unit of usage

and expenditures.18

We focus on storage and computation, as they are the main IT services �rms use in

cloud computing, which we describe in greater detail in Appendix C.1. We measure

storage in gigabytes and computing in core-hours (number of cores � number of hours).

Core-hours are a commonly used metric to quantify the amount of computational work

done in cloud computing environments. 19 We use this data to construct monthly-level

usage at the �rm-location (data center) level for storage and computation from July 2015

to December 2021. As a result, we can observe data stored in the US and EU separately by

the same �rm. 20Through this data, we also observe SIC industry codes, �rm headquarters

17These software service solutions can be purchased from our provider, but �rms may also choose to implement
such services themselves manually. In this latter case, we would observe this usage as computation.

18This is in contrast with the most input information in production datasets, which generally include input
expenditures rather than measures of direct usage.

19To illustrate the concept, consider the example of a software engineer in a startup who runs a virtual machine
with 8 cores for 5 hours. In this case, the usage is recorded as 40 units of compute.

20It is important to note that our sample is comprised of �rms rather than establishments.
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location, and whether a �rm is a start-up or not. 21

One limitation of our dataset is that it does not allow us to see which speci�c data �rms

are collecting nor the exact ways in which they use the data. This limits our ability to

speak to some important questions about how �rms speci�cally use data.

3.2 Cloud Computing Usage from Several Providers (2016-2021)

One key concern about using only cloud computing usage data from a single �rm is that

we cannot observe the margin of usage being diverted to other cloud providers. To address

this concern, we use an establishment-level IT data panel produced by a marketing and

information company called Aberdeen (previously known as �Harte Hanks�). Using web

crawling, surveys and publicly available data, Aberdeen provides the adoption of cloud

technology on the extensive margin from each of the service providers (e.g., Amazon,

Microsoft, Google) between 2016 and 2021 at the yearly level. The Aberdeen dataset com-

prises around 3.1 million establishments from 1.9 million companies worldwide. Previous

versions of this data have been widely used by researchers to construct measures of IT

adoption, both in Europe and in the United States. 22We use this data to identify single

cloud �rms and examine di�erential changes in market share around the GDPR for cloud

providers.

3.3 Other Datasets: Firm Characteristics

Aberdeen also provides information on other �rm characteristics, such as employment

and revenue from Duns & Bradstreet. We match our cloud computing data to Aberdeen

�rms using a matching procedure described in Appendix C.3 based on name, location,

domain, and other information. We are able to match close to 60% of our cloud �rms to

the Aberdeen dataset. We use the employment information in 2018 to de�ne �rm size. We





Table 2: Summary Statistics

Industry
Number Share Share Mean Mean Mean Share
of Firms Compute Storage Storage Compute Data Intensity EU

Services 15,886 36.3% 31.9% 844 628 1.84 40.9%
Software 9,480 17.6% 20.8% 690 670 1.69 59.8%
Manufacturing 3,095 10.5% 11.6% 1,293 986 1.81 54.4%
Retail Trade 2,152 5.2% 5.4% 1,101 917 2.02 46.9%
Finance & Insurance 2,057 11.4% 10.8% 1,652 1,571 1.89 44.9%
Wholesale Trade 1,945 3.7% 4.5% 925 885 2.10 52.3%
Other 2,689 15.3% 15.0% 1,714 1,616 2.23 46.1%

All 37,304 100.0% 100.0% 1,000 803 1.86 48.1%

Notes:



Figure 2: Histogram of Data Intensity by Industry

(a) Software Firms (b) Non-Software Services Firms

(c) Manufacturing Firms (d) Other Firms

Notes: Figure presents a histogram of data intensity at the �rm level, de�ned as the ratio of data stored to
computation (the ratio of gigabytes to core hours) for each industry, which de�ned by SIC codes (with the
exception of software �rms, which are carved out of the services division). We limit to the sample of �rms
who have ever used both storage and computation (



4 Event Study Evidence

In this section, we apply an event study design to study the e�ect of the GDPR on �rms'

data storage and computing decisions. We begin by de�ning our empirical strategy and

providing intuition for our identifying assumptions. Next, we turn toward our baseline

estimates of the GDPR's impact on data input choices. We also discuss the robustness of

our strategy across various alternative samples and speci�cations. Finally, we estimate

how the e�ects of the GDPR vary across industries in our sample.

4.1 Empirical Strategy

Our empirical strategy aims to identify the causal e�ect of the GDPR on �rms' computation

and data choices. In order to identify a relevant treatment and control group for our



exclusive and exhaustive divisions de�ned by SIC codes.

Each of our coe�cients of interest, � @, represents the di�erence in outcomes relative to

the quarter before the GDPR came into force. Now, because our speci�cation and sample

conditioning only use �rm information from beforethe �rst year of the GDPR, we can exam-

ine any potential anticipation e�ects in coe�cients directly before the GDPR. 29Finally, we

restrict our analysis to the sample period from July 2015 to March 2020.30The identifying

assumption of our empirical strategy is a conditional parallel trends assumption. We take

advantage of our large sample and allow time trends in our outcomes to vary �exibly by

industry and size in our baseline speci�cation, with 110 distinct bins for each quarter (11

de�ned industries � 10 pre-GDPR size-deciles).

To discuss the short- and long-run estimates of the e�ect of the GDPR, we also present

results in a table format using an alternative regression speci�cation given by:

. 8C= � 1 � 1f EU8g � 1f C2Jun/18-May/19 g ¸ � 2 � 1f EU8g � 1f C2Jun/19-May/20 g ¸  8¸ � :@B̧ � 8C– (2)

where the notation of  8and � :@Bis the same as in equation (1



Figure 3: Event Study Estimates of the E�ect of GDPR on Cloud Inputs

(a) E�ect on Storage (b) E�ect on Compute

-.4

(c) E�ect on Data Intensity

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator. The coe�cient in the quarter before the GDPR's implementation is normalized
to zero. Gray bars represent the 95% con�dence intervals, and standard errors are clustered at the �rm level.
Sample sizes are presented in Table 3.





Table 3: Short- and Long-Run E�ects of GDPR
(Storage, Computing, and Data Intensity)

(1) (2) (3) (4)

Panel A. Dependent variable: Log of Storage

Short-Run E�ect -0.129 -0.132 -0.125 -0.134
(0.018) (0.017) (0.017) (0.017)

Long-Run E�ect -0.257 -0.260 -0.228 -0.242
(0.024) (0.024) (0.024) (0.024)

Observations 1,143,149 1,143,149 1,143,149 1,143,149
US Firms 16,409 16,409 16,409 16,409
EU Firms 16,281 16,281 16,281 16,281

Panel B. Dependent variable: Log of Computation

Short-Run E�ect -0.078 -0.082 -0.132 -0.148
(0.016) (0.016) (0.016) (0.016)

Long-Run E�ect -0.154 -0.164 -0.224 -0.256
(0.024) (0.024) (0.024) (0.024)

Observations 672,942 672,942 672,942 672,942
US Firms 10,294 10,294 10,294 10,294
EU Firms 8,927 8,927 8,927 8,927

Panel C. Dependent variable: Log of Data Intensity

Short-Run E�ect -0.072 -0.071 -0.025 -0.021
(0.020) (0.020) (0.020) (0.019)

Long-Run E�ect -0.131 -0.126 -0.049 -0.035
(0.029) (0.029) (0.029) (0.029)

Observations 418,803 418,803 418,803 418,803
US Firms 5,487 5,487 5,487 5,487
EU Firms 5,872 5,872 5,872 5,872

Time Trends Vary By:
Industry � Pre- Pre-GDPR

Industry -
GDPR Size Deciles Size Deciles

Notes: Table presents estimates of equation (2) of the short-run (� 1) and long-run ( � 2) coe�cients, which
estimate the impact of the GDPR in the �rst and second year after the GDPR came into force. Column (1)
presents our baseline speci�cation, where we allow for time trends to vary �exibly across industry and pre-
industry size decile interactions. Column (2) restricts these time trends so that they only vary by pre-GDPR
size decile, while Column (3) only allows for variation at the industry level. Column (4) shows estimates
when we include no time-trend interactions. Industries are de�ned as the ten divisions classi�ed by SIC
codes. Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we de�ne
�size decile� as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the �rm level.
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Results on Data Intensity Comparisons of the magnitudes between our data storage

and computation results suggest that �rms became less data-intensive after the GDPR.

However, in order to account for potential compositional e�ects, we investigate the e�ects

of the GDPR on data intensity by using the natural logarithm of the ratio of computing

to storage as an outcome. We estimate our speci�cation on �rms that used bothtypes of

inputs for the full year beginning exactly two years before the GDPR came into force. 33

Panel (c) of Figure 3 shows that �rm data intensity decreases immediately after the

GDPR. Panel (c) of Table 3 estimates a decrease of around 7% in the short run and 13% in

the long run. The fact that �rms in the EU become less data-intensive post-GDPR (relative

to comparable US �rms) suggests that storage and computing are likely complements in

production, which we revisit using a production framework in Section 5.

Robustness of Results There are several potential threats to our identi�cation strategy.

In Appendix D, we go through the most critical threats to identi�cation and show evidence

suggesting that these threats are not driving our results. We summarize the main exercises

below, and we leave the additional exercises (such as alternative sample de�nitions and

alternative empirical speci�cations) and details in Appendix D.

The most salient identi�cation threat is that we observe only one cloud service provider

(Appendix D.1). What we observe as declines in cloud usage could simply be �rms

substituting usage towards other providers. We �rst show that our results are similar

when we restrict our sample to �rms that only use our cloud provider (Table OA-2 and

Figure OA-6). Therefore, it is unlikely that the declines we observe are simply driven by

substitution in usage to other providers. Second, we show that results are unlikely to be

driven by �rms shifting to traditional (i.e., in-house) IT services. To do so, we show that

our empirical exercise yields similar results for the start-up �rms in our sample, which are

unlikely to have or use traditional IT (Table OA-4 and Figure OA-8).

Another natural explanation for our results is the possibility of di�erential price trends

in the EU and the US (Appendix D.2). If cloud computing providers increased their

prices in the EU relative to the US around the time of the GDPR (perhaps to cover GDPR

compliance costs, for example), we could see a decline in storage and computation even

without the GDPR having direct e�ects on �rms. To check this hypothesis, we use the

paid prices for cloud storage as a dependent variable. Appendix Figure OA-9 shows that

prices did not change di�erentially in the EU and the US. Cloud prices have been generally

trending downwards, but not in a di�erential manner between the EU and the US.

if it remains unused. Additionally, in Section 5, we �nd that �rms are responsive to changes in cloud prices.
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We also consider whether our results are particularly being driven by websites' cookie

consent notices and the clauses governing the collection and storage of data from websites

(Appendix D.3). We might expect �rms with active website use�which we proxy for

through the usage of cloud-based web services in our cloud provider�to be more a�ected



Table 4: Short- and Long-Run E�ects of GDPR
(Heterogeneous E�ects by Industry Classi�cation)

Baseline
Software Non-Software

Manufacturing
Other

Services Services Industries
(1) (2) (3) (4) (5)

Panel A. Dependent variable: Log of Storage

Short-Run E�ect -0.129 -0.113 -0.080 -0.259 -0.190
(0.018) (0.035) (0.026) (0.063) (0.037)

Long-Run E�ect -0.257 -0.253 -0.180 -0.404 -0.354
(0.024) (0.048) (0.036) (0.086) (0.051)

Observations 1,143,149 291,781 486,457 94,612 270,299
US Firms 16,409 3,196 8,141 1,141 3,931
EU Firms 16,281 5,150 5,912 1,508 3,711

Panel B. Dependent variable: Log of Compute

Short-Run E�ect -0.078 -0.078 -0.048 -0.171 -0.077
(0.016) (0.032) (0.024) (0.051) (0.033)

Long-Run E�ect -0.154 -0.150 -0.100 -0.322 -0.163
(0.024) (0.050) (0.037) (0.073) (0.049)

Observations 672,942 165,752 270,846 65,532 170,812
US Firms 10,294 2,050 4,623 900 2,721
EU Firms 8,927 2,747 3,204 914 2,062

Panel C. Dependent variable: Log of Data Intensity

Short-Run E�ect -0.072 -0.084 -0.084 -0.078 -0.043
(0.020) (0.042) (0.031) (0.066) (0.039)

Long-Run E�ect -0.131 -0.196 -0.161 -0.043 -0.069
(0.029) (0.064) (0.045) (0.097) (0.055)

Observations 418,804 103,606 168,020 41,449 105,729
US Firms 5,487 1,054 2,473 496 1,464
EU Firms 5,872 1,755 2,123 610 1,384

Notes:Table presents estimates of equation (2) of� 1 and � 2, re-estimated across for various industry divisions.
For comparison, Column (1) presents our baseline estimates across all industry divisions. Column (2) restricts
our sample to software �rms, which are de�ned through SIC codes 7370 - 7377. Column (3) restricts the
sample to non-software service �rms, Column (4) restricts the sample to �rms in the manufacturing division,
and column (5) presents estimates on the remaining �rms in the sample (non-software, non-services, and
non-manufacturing industry divisions). Standard errors are clustered at the �rm level.
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Table 5: E�ect of Strictness
on Short- and Long-Run E�ects of GDPR)

Storage Compute Intensity
(1) (2) (3)

Short-Run E�ect -0.028 -0.061 -0.042
(0.044) (0.032) (0.042)

Long-Run E�ect -0.040 -0.047 -0.015
(0.055) (0.049) (0.059)

Observations 1,143,149 672,942 418,803
EU Firms 16,281 8,927 5,872

Notes:Table presents estimates of equation2 with an additional term to measure the e�ect of above-average
GDPR strictness. The short-run term captures the triple interaction of the short-run post-GDPR coe�cient,
the EU categorical variable, and a categorical variable indicating �rms in above-average enforcement coun-
tries. The long-run term repeats the same procedure but uses the long-run post-GDPR period instead.
Strictness is measured according to Johnson et al. (2022) using data from European Commission (2008).
We continue to de�ne industries as the ten divisions classi�ed by SIC codes. Pre-GDPR size deciles are
measured thirteen months before the GDPR. For data intensity, we de�ne �size decile� as the interaction
between storage and compute terciles when measured in the period. Standard errors are clustered at the
�rm level.

from data to capital and labor more e�ciently than other industries or they might have

higher compliance costs. Similarly, service �rms may be less responsive to the GDPR

simply because storage and computation are essential parts of their production processes.

Finally, Panel C of Table 4 shows results for data intensity. We �nd that data intensity

decreases in all industries, however the standard errors are wide standard errors for some

estimates. The point estimates suggest that long-run data intensity decreases the most in



We modify Equation (2) by adding two additional coe�cients to capture potential

heterogeneity by enforcement stringency. First, we add a triple interaction of the short-run

post-GDPR coe�cient, the EU categorical variable, and a categorical variable indicating

�rms in above-average enforcement countries. Our second coe�cient repeats the same

procedure but uses the long-run post-GDPR period instead. Our main coe�cients of

interest (the triple interactions) measure the short- and long-run di�erences in . 8Cfor

EU �rms with above-median strictness relative to those with below-average strictness

post-GDPR. Table 5 summarizes the results. The interaction coe�cients (although not

statistically signi�cant) suggest that countries in above-average strictness countries face

larger declines in storage and computation (4 pp. and 4.7 pp. more than those in below-

average strictness countries in the long run, respectively). Data intensity decreases more

for �rms in the above-average strictness countries.

4.4 Discussion

Our results so far suggest that EU �rms responded to the GDPR by storing less, computing

less, and becoming less data-intensive relative to US �rms. These results are important for

several reasons. First, we provide direct and large-scale evidence that �rms comply with

the GDPR by signi�cantly reducing their data and computation. Second, we show that the

GDPR distorts �rms' input choices by changing the composition of data and computation

used in �rm production. Third, the results are not driven by a single industry, by a

single country, or exclusively by website �rms that are a�ected by cookie consent policy,

indicating the far-reaching implications of the GDPR across many industries. Fourth, the

heterogeneity in our results across industries provide evidence that the e�ect of GDPR is

likely to di�er across �rms because some �rms rely on data more heavily than others.

Although these �ndings provide insights into the impact of privacy laws on �rm

behavior and provide direct evidence, they do not o�er a comprehensive understanding

of �rm-speci�c economic costs. Such an analysis requires understanding how �rms use

data in production and the di�erent adjustment margins of �rms. For this reason, we take

a more structural approach in the next section.

5 A Model of Production with Data

This section introduces a production function framework with data and estimates its

structural parameters. We use our framework to consider both how �rms use data and

computation in production and how privacy regulations might a�ect these decisions. One

key consequence of the GDPR is that �rms' data costs are a�ected. As data serves as an
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input in production, any regulatory-induced increase in input costs will inevitably impact

�rms' input choices. Therefore, we model the GDPR as a gap between the actual cost of

data and the perceived cost of data. We focus on estimating the size of this wedge and its

implications for �rms.

Our framework is designed to be �exible in terms of how data and computation are

integrated into �rm production. There currently is no standardized framework for how

data enters the production function, and there is likely tremendous heterogeneity in how

�rms use data. For this reason, we model only the relationship between data and compu-

tation in �rm production rather than modeling a full production function with standard

inputs such as labor and capital. We introduce the model below.

5.1 Production Function with Data

Firms produce information by processing data, which requires two inputs: data and

computation. We assume the following constant elasticity of substitution (CES) form for

the information production function:

�8C=
�
$ 2

8C¹� 8Cº� ¸  � �
8C

� 1• � –

where � 8Crepresents the amount of computation performed by �rm 8in month C, � 8Cis

the amount of data stored by �rm 8 in month C, and $ 2
8Cis compute productivity. The

parameter � = ¹1•¹ 1 � � ºº is the elasticity of substitution between data and computing.

Our model includes a �rm-speci�c productivity term, $ 2
8C, to capture heterogeneity in

computing productivity. 36This choice is motivated by the substantial variation in the data

intensity of �rms, as reported in Figure 2 of Section 3. This heterogeneity can arise for two

reasons. First, there could be inherent production technology di�erences between �rms

on how they could use data, making the production of information more data-intensive for

some �rms than others. Second, even if the production technology is the same, some �rms

may have higher-quality data or better computation tools (e.g., higher-quality software

tools and more skilled engineers) to generate the same amount of information with less

data. Our paper is agnostic about the source of $ 2
8C. However, we believe it is essential to

account for such heterogeneity.

We also intentionally refrain from specifying how information is integrated into the

production function, as �rms can use information in di�erent ways. As a result, our

model remains general enough to capture several of the common ways that data has been

36The literature typically calls this term �factor-augmenting productivity.� We use the term �compute pro-
ductivity� instead of �compute-augmenting productivity� for the sake of brevity.
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uniform cloud computing prices since they can access all data centers. However, latency

e�ects and switching costs between data centers may restrict �rms' ability to use all data

centers, leading to di�erent consideration sets for di�erent �rms (and thus di�erential

prices). In addition, potential negotiated discounts may also result in heterogeneous

prices. Based on the assumptions of variable storage and computation inputs and short-

run cost minimization, we derive the following �rst-order condition for �rms' data and

computing choices from the CES production function:

log
� � 8C

� 8C

�
= � ¸ � log

� ?3
8C

?2
8C

�
¸ � log¹$ 2

8Cº– (3)

where � = � � log¹ º. We provide the complete derivations in Appendix E.1. We also show

that we get the same �rst-order condition if we were to include labor (software engineers)

in the information production function in Appendix E.2.

According to this �rst-order condition, the relationship between input ratio and input

prices is governed by the elasticity of substitution between these two inputs. When the

price of data (relative to compute) is higher, �rms may substitute towards compute, with

an intensity of � . A notable feature of this equation is that the elasticity of substitution

between compute and data can be estimated from �rms' input demand alone, without

observing other inputs or outputs. This property arises from the homotheticity property of

the CES production function, commonly used in the literature for estimating the elasticity

of substitution (Doraszelski and Jaumandreu, 2018; Raval, 2019; Demirer, 2020).

Although our framework expands upon the production function literature by consider-

ing computation and data, it does have some limitations. While we account for variations

in data quality across �rms using $ 2
8C, we assume that data is homogenous within a single

�rm. This assumption might be strong since, in reality, �rms may have di�erent types of

data with varying quality. This limitation would become particularly relevant if, for ex-

ample, the GDPR a�ected data composition in �rms. To relax this assumption, we would

need to include di�erent data types in production, which we do not observe. It is worth

noting, however, that the assumption of homogenous inputs within a �rm is a common

practice in production function research, primarily due to data limitations.

Our approach to modeling data in �rm production di�ers from some recent approaches

in the literature. Our framework is a partial equilibrium model where data �exibly enters

the production function and therefore cannot speak to some of the important and inter-





the wedge between the actual cost of data and the total cost that includes complying

with GDPR. We model this wedge as �rm-speci�c because compliance costs will likely be

heterogeneous across �rms, depending on their size and the types of data they collect.

Alternatively, we can also interpret � 8 as each �rm's perceived cost of the GDPR, as they

may hold di�erent beliefs about enforcement or have varying levels of risk aversion that

a�ect the expected cost of liability in the event of a data breach. We follow the literature

and model � 8 as a multiplicative wedge (e.g., Chari et al., 2007; Hsieh and Klenow, 2009).

5.3 Identi�cation of Parameters

Our end goal is to estimate two parameters: the wedge introduced by the GDPR ( � 8) and

the elasticity of substitution between computation and data. To illustrate the potential

identi�cation problems when estimating � 8 and � , consider the �rst-order condition in

equation (3) after the GDPR for EU �rms:

log
� � 8C

� 8C

�
= � ¸ � log

� ?3
8C

?





addresses these two potential sources of endogeneity in prices by leveraging two features

of our data. First, because we observe both list prices and negotiated prices, we can use

changes in list prices to instrument for the changes in negotiated prices. Changes in list

prices for data center locations are plausibly exogenous because no single �rm is large

enough to a�ect list prices with their changes in productivity. These changes, however, are

still predictive of the prices that �rms face because discounts are applied to list prices. 43

Second, we use the fact that we observe data center choices at a high frequency to

construct a measure of exposure to speci�c data centers for each �rm and period. By using

historical exposure shares rather than contemporary ones, we leverage the fact that these

previous decisions are sunk. However, previous data center choices remain predictive of

the data centers that �rms will use in the future because of the switching costs associated

with moving data between data center locations. Transferring data from one location to

another can be time-consuming and expensive, especially for large or complex datasets.

As a result, �rms' location choices are highly persistent over time.

More formally, the shift-share design combines list prices with variation in �rms' pre-

existing data center location choices. We construct instruments I 3
8Cand I 2

8Cfor the data

storage and computation prices each �rm 8faces at time C. The exposure shares for each

service in a given period are calculated as the share of �rm 8's usage in a given data

center relative to the �rm's total demand. This di�erential exposure gives us the following

equation for the instrument:

I f 2–3g
8C =

Õ

;2�

Bf 2–3g
8;¹C� 12º?

f 2–3g
;C (7)

where Bf 2–3g
8;¹C� 12º denotes �rm 8's usage share for data center location ; as measured 12

months before C, ?f 2–3g
;C is the price index for each service in location ; at time C, and �

denotes the set of data center locations.44Our exposure shares are lagged by 12 months

because contemporaneous exposure shares are susceptible to reverse causality. While shift-

share instruments can be driven by assumptions about either the exogeneity of �shares"

or the independence and exogeneity of �shocks" (Borusyak et al., 2022), the identifying

assumption underlying our exposure shares is most similar to the �shares" assumption

discussed in Goldsmith-Pinkham et al. (2020). In particular, the exclusion restriction

behind our shift-share design is that contemporary shocks to the compute productivity of

each �rm are exogenous to the changes in the ratio of list prices of cloud computing in the

�rm's historical data center choices, controlling for industry-speci�c trends. 45

43We provide more information about cloud computing pricing in Appendix F.1.
44We provide more detail on our price index construction in Appendix F.2.
45One example of a potential threat to identi�cation would be if idiosyncratic compute productivity shocks

are strongly correlated over time after accounting for aggregate industry time trends, and this caused �rms
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We useI 2
8C• I 3

8Cas an instrument for price ratio ?3
8C• ?2

8Cand estimate Equation (6) for three

EU industries (software, non-software services, and manufacturing) separately using pre-

GDPR data, as the pre-GDPR data does not include a regulatory wedge. This allows us to

estimate �rm-speci�c compute productivity ( $ 2
8) and production technology parameters

before the GDPR. We also estimate Equation (6) for US industries over the entire sample

period, as US �rms do not experience regulatory distortion either before or after the

GDPR. This allows us to recover the industry-speci�c compute productivity trends, ) 2
C for

US industries.

5.3.2 Second Step: Identi�cation of the Cost of the GDPR

In the second step, we use the EU post-GDPR data to estimate the wedge generated

by the GDPR (� 8) and the EU post-GDPR elasticity of substitution between computing

and storage. In particular, we assume that the cost of data after the GDPR is given by:

¡?3
8C= ¹1 ¸ � 8º?3

8C, where � 8 re�ects the cost of the GDPR. Incorporating this into the �rm's

input demand, we obtain the following equation:

log
� � 8C

� 8C

�
= � ¸ � 2 log

� ?3
8C

?2
8C

�
¸ � 2 log¹1 ¸ � 8º ¸ � 2 log¹$ 2

8º ¸ � 2 log¹) Cº ¸ � 2 log¹� 8Cº– (8)

where � 2 is the post-GDPR elasticity of substitution. Here, unlike the pre-GDPR input

demand equation, the additional term � 8 a�ects the ratio of computing to storage. The

higher the cost of the GDPR, � 8, the more likely �rms are to substitute away from data

toward computation. In order to use this equation for identifying � 8, we make the following

assumptions:

Assumption 1.



(Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009). The typical approach in that

literature assumes that �rms have the same production technology. This assumption is

needed because otherwise the �rm-speci�c wedges cannot be distinguished from arbi-

trary �rm-level heterogeneity in production technology. We face the same identi�cation

problem but take a di�erent approach. Instead of assuming homogeneous production

technology, we allow for some heterogeneity through compute productivity but assume

that this heterogeneity is time-invariant within a window of a few years. We note that

both approaches have strengths and weaknesses, but we believe that in our context, it is

essential to allow for heterogeneous compute technology.

We also di�er from this literature in that we do not impose a full production function

structure. Instead, we use the demand for two variable inputs�one distorted and one

not�to identify the wedge. The underlying idea is that by looking at the ratio of inputs, we

can net out the sources of distortions that are common to both inputs, such as market power

and adjustment costs, and recover the distortion speci�c to data input. This identi�cation

strategy is similar to the approach used in the literature to identify input market power

from the wedge in the ratio between one distorted and one undistorted variable input

(Morlacco, 2020; Kirov and Traina, 2021).

Assumption 2. EU and US industries follow the same time trends in aggregate compute technology

post-GDPR.

This is the second critical assumption necessary for identifying the cost of the GDPR.

The identi�cation of wedges requires controlling for aggregate changes in compute pro-

ductivity. Otherwise, the changes in the computation-to-data ratio of EU �rms due to

GDPR may be attributed to di�erential aggregate trends in compute productivity in Eu-

rope. Therefore, we use the estimated post-GDPR industry trend from the US �rms to

control for industry trends in the EU. In particular, the parallel trends we �nd within in-

dustries before the GDPR in our reduced-form results are consistent with this assumption.

With these two assumptions, we can estimate the following equation:

log
� � 8C

� 8C

�
= � 2 ¸ � 2

�
log

� ?3
8C

?2
8C

�
¸ log¹  ) Cº

�
¸ � 2

�
log¹1 ¸ � 8º ¸ log¹  $ 2

8º
�

¸ log¹� 8Cº– (9)

where  $ 2
8 denotes estimates of compute productivity using pre-GDPR data and  ) 8denotes

the estimates of compute productivity trend of the US �rms. This equation allows us to

estimate our main object of interest (� 8) along with the post-GDPR elasticity of substitution



Table 6: Elasticity of Substitution Results by Industry

Industry Software Services Manufacturing

OLS IV OLS IV OLS IV

Elasticity of Substitution



Figure 4: Elasticity of Substitution Between Storage and Computing for EU �rms
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Notes:Figure presents our estimation results of the elasticity of substitution between storage and computing
(� ) across industries, and we present separate estimates for the pre- and post-GDPR (� 1 and � 2, respectively).
Gray bars denote the 95% con�dence intervals, and standard errors are calculated using 100 bootstrap
repetitions at the �rm level.

and associated � -statistics. The �rst-stage coe�cients are positive, indicating a positive

relationship between our shift-share instruments and the contemporaneous prices faced

by �rms. Our results also indicate high � -statistics, suggesting that our instruments are

strongly correlated with the endogenous variables and that we have a robust �rst stage.

The elasticity of coe�cient estimates suggests that data and computation are strong

complements in all industries, with an estimated elasticity of substitution ranging from

0.34 to 0.44. The elasticity of substitution is highest in the services industry, suggesting

that �rms in the services industry can more easily substitute between data and computa-

tion. Overall, the complementarity between data and computation is consistent with our

reduced-form evidence presented in Section 4, which suggested that �rms reduced not

only data but also computation in response to the GDPR. Finally, comparing our OLS and

IV estimates indicates that using OLS leads to an upward bias in the elasticity of substitu-

tion. Thus, as we might expect, the correlation between �rms' compute productivity and

data-to-compute price ratios is positive; �rms with higher compute productivity are more

likely to search for lower prices and negotiate higher discounts.

We also investigate how the elasticity of substitution parameters changed after the

GDPR, and particularly whether the GDPR led to a change in production technology.

Figure 4 reports the elasticity of substitution estimates separately before and after the GDPR

for EU �rms. While the results suggest a slight decline in the elasticity of substitution in all
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Figure 5: Wedge Estimates

(a) Average Wedge by Industry (b) Wedge Distribution

Notes:This �gure presents our estimation results for the wedge induced by the GDPR ( � 8). Panel (a) presents
the average estimated wedge for �rms within each industry. Panel (b) presents the full distribution of
estimated wedges. Gray bars denote the 95% con�dence intervals, and standard errors are calculated using
100 bootstrap repetitions at the �rm level.

industries, we conclude that the GDPR did not lead to a large change in how �rms process

data to generate information. 47

Although we are not aware of any previous estimates of the elasticity of substitution

between data and computation, it is still informative to compare these estimates with

the estimated substitutability between other inputs. The literature has mostly focused

on estimating the elasticity of substitution between capital and labor. While estimates

vary, evidence with plant-level data suggests values in the range of 0.50 - 0.70 (Caballero

et al., 1995; Chirinko, 2008; Raval, 2019). This indicates that data and computation are

less substitutable than traditional inputs. Our elasticity of substitution estimates, by

themselves, are an important contribution to the literature, as there is very little empirical

evidence on how �rms use data despite its growing importance. Importantly, the strong

complementarity between data and computation suggests that data itself is not su�cient

to produce information; �rms need to process data, and this requires large computational

resources. Therefore, our results highlight the growing role of computation along with





alent to a 25% tax, and with monotonically decreasing e�ects as the �rm size gets bigger.

This �nding is consistent with other evidence on the e�ects of the GPPR in the literature

(Campbell et al., 2015; Koski and Valmari, 2020; Goldberg et al., 2023) and may re�ect the

fact that larger �rms have more resources with which to comply with the GDPR. In panel

(b), we report the wedge distribution across quantiles of the compute productivity distri-

bution. There is a strong inverse monotonic relationship between compute productivity

and the data cost of the GDPR. As �rms become more compute-intensive, the magnitude



Panel (a) shows the average change in the cost of information by industry, plotting the mean

along with standard errors. These results suggest that changes in the cost of information

were signi�cantly lower than changes in the cost of data. The average increase in the cost

of information in the manufacturing industry is 2%, while it is about 4% in software and



tion in production, we are able to map the increase in regulatory costs to increases in the

production costs of information.

Figure 7: Results on Information Cost
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Notes:Figure presents our estimation results for the change in the cost of information induced by the GDPR.
As discussed in the text, we calculate the increase in the cost of information by using Equation (10) to compare
the cost of information with our estimated wedge (  � 8) to the cost of information in the counterfactual with
no wedge (� 8 = 0). Panel (a) presents the average estimated increase in the cost of information for �rms
within each industry. Standard errors are calculated using 100 bootstrap repetitions at the �rm level. Panel
(b) presents the full distribution of the estimated increase in the cost of information. Panel (c) presents the
average estimated increase in the cost of information by the pre-GDPR level of the total expenditures in
data. Panel (d) shows our estimates of the "�rm re-adjustment" contribution to the total change in the cost
of information.
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6.4 Production Costs

Finally, to study the impact of the wedges imposed by GDPR on production, we evaluate

how our estimated changes in the cost of information translate into changes in production

costs. For this goal, one would ideally estimate a production function that captures

substitution patterns between information and other inputs. This requires �rm-level

information on how �rms use information and non-data inputs (e.g., capital and labor).

In our dataset, however, we do not observe non-data inputs, which precludes us from

estimating a full production function.

For the above-stated reasons, we attempt to make progress on this question under some

simplifying assumptions and industry-level data. In particular, if the production function

is a constant returns to scale Cobb-Douglas, the input elasticities can be measured by their

cost shares under the assumption that all inputs are �exible, have common prices, and that

�rms do not have market power (Foster et al., 2008; Backus, 2020). Using these assumptions,



IT-related expenditures and aim to estimate a range of cost share of information at the

industry level.

To estimate the information expenditure shares, we turn to the Aberdeen data set and

various industry-level surveys, which we discuss in detail in Appendix G.2. While these

sources only partially capture the information expenditure share and capture di�erent

samples of �rms, we aim to provide a range of plausible values by combining estimates

across surveys and years. While we might expect each source to su�er from distinct

drawbacks, we �nd that the sources generate remarkably consistent estimates for the

information share of expenditure across industries. Appendix Table OA-10 provides the

estimates from each source separately, and we take the inter-quartile range from our

sources for our back-of-the-envelope calculation.

We present these ranges for� from Equation 12 in Table 7. Combining these with the

average increases in the cost of information calculated from Section 6.3, we estimate that

production costs increase between 0.34% and 0.66% on average for software �rms. These

average increases are far larger than the ranges we estimate for services and manufacturing

�rms, which are 0.09-0.15% and 0.05-0.07%, respectively. This di�erence is primarily driven

by the larger information expenditure shares of software �rms�the median expenditure

share estimate for software is 12.7%, while for manufacturing is 2.7%�combined with the

fact that software �rms also face the largest average wedges and the resulting increases in

the cost of information.

We view the results of our back-of-the-envelope calculation as providing suggestive ev-

idence that the direct impacts of the GDPR that we estimate translated into heterogeneous

e�ects on production costs with non-negligible e�ects in data and information-intensive

industries.

7 Conclusions

In this paper, we examine the impact of the GDPR on �rm data input choices. Comparing

EU �rms a�ected by the GDPR to similar �rms in the US, we document that the GDPR

decreased the amount of data used by �rms. Firms subject to the GDPR decrease the

amount of data stored by 26% and the amount of computation by 15% by the second

year after the GDPR, becoming less data-intensive. Our results contribute to the literature

documenting the costs of GDPR, complementing the existing literature by focusing on

data outcomes that have been rarely studied.

they do not provide relevant industry-level estimates of this statistic that we could use for our estimation
(Zolas et al., 2021; McElheran et al., 2023).
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Table 7: E�ects of GDPR on Production Costs

Software Services Manufacturing
(1) (2) (3)

Mean Increase in Information Costs (� ) 0.04 0.03 0.02
Range of Information Expenditure Share ( � ) 8.7% - 16.7% 2.9% - 5.0% 2.3% - 3.3%

Resulting Increase in Production Costs (� ) 0.34% - 0.66% 0.09% - 0.15% 0.05% - 0.07%

Notes:Table presents estimates of equation (12) calibrated with increases in the cost of information estimated
in Section 6.3 and a range of information expenditure shares estimated from Aberdeen and other industry
surveys for each industry. Column (1) presents these estimates for software �rms, which are de�ned through
SIC codes 7370 - 7377. Column (2) presents estimates for non-software service �rms. Column (3) presents
estimates for manufacturing �rms. Appendix G provides more detail about these information expenditure
share estimates.

We also map the observed shift in input choices to the production cost of the GDPR

using a production function model that we develop and estimate. We are in a privileged

position, as we estimate �data usage� as a multi-dimensional object composed of both

storage and computing units. We show that storing and computing are complements in

production. To our knowledge, these are the �rst estimates of such a trade-o�. Having
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A Additional Exhibits

Figure OA-1: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(E�ects on Storage by Industry)

(a) Software Firms (b) Non-Software Services Firms

(c) Manufacturing Firms (d) Other Firms

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator, when the outcome is log storage. The coe�cient in the quarter before the
GDPR's implementation is normalized to zero. Gray bars represent the 95 percent con�dence intervals, and
standard errors are clustered at the �rm level. Results are broken down by industry, and red dots show the
main estimates from the paper. The full de�nition of industries and the corresponding observation numbers
are available in Table 4.
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Figure OA-2: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(E�ects on Compute by Industry)

(a) Software Firms (b) Non-Software Services Firms

(c) Manufacturing Firms (d) Other Firms

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator, when the outcome is log computation. The coe�cient in the quarter before the
GDPR's implementation is normalized to zero. Gray bars represent the 95 percent con�dence intervals, and



Figure OA-3: Elasticity of Substitution Between Storage and Computing for US Firms

Notes:This table presents our estimation results of the elasticity of substitution between storage and comput-
ing ( � ) across industries. We present separate estimates for the pre- and post-GDPR (� 1 and � 2, respectively).
Standard errors are calculated using 100 bootstrap repetitions.

OA - 4





risks. The PIA should be conducted at the start of a project so that all stakeholders are

aware of any potential privacy risks. The PIA should include the following components:

(i) a systematic description of the purposes and planned processing operations, including

the controller's legitimate interests (if applicable); (ii) an assessment of the necessity and







be increasing with the amount of data stored by the �rm. Moreover, one can imagine that

the probability of a cyberattack could increase with the amount of data. Another related

variable cost is cybersecurity insurance. Of the 1,263 organizations surveyed in Ponemon

Institute (2019), 31% of respondents purchased insurance covering cyber-risks. Of those

insured, 43% had insurance coverage for GDPR �nes and penalties.

B.3 Publicly Available GDPR Fine Data

Our primary source of publicly available �ne data is a database maintained by CMS Legal

Services, a large international law �rm that operates in over 40 countries. This data

provides an overview of the public �nes and penalties that data protection authorities

have imposed under the GDPR. Although not all �nes are made public, the data on public

�nes is quite rich, containing the �ne amount, the entity being �ned, the country of the

�ne, and the GDPR articles under which the �ne was leveled. 53 The database contains

more than ¿3 billion in �nes levied in the �ve years after the implementation of the GDPR.

Furthermore, there are primary and secondary sources associated with each of the �nes

in the database.

For each �ne, we scrape the �ne amount, the entity that it was levied on, the date, and

the reason that the �ne was levied. In Figure 1 in the paper, we show the distribution of

�ne sizes, highlighting that there is considerable variation in the size of the �nes. There is



Figure OA-4: Publicly Reported GDPR Fines
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C Data Appendix

C.1 Cloud Computing Details

Cloud computing resources can be categorized into three forms: Infrastructure as a Ser-

vice (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS provides

storage, computing and networking services on demand. PaaS provides a complete de-

velopment environment in the cloud, providing low-level infrastructure for development.

SaaS provides packaged software services ready to be deployed and used. In this section,

we provide details on how �rms perform computation and storage in cloud computing.

C.1.1 Computation

Firms that require computation on the cloud typically opt for virtual machines (VMs).

VMs are a type of cloud computing �compute" product that allows users to create and

manage virtual machines instead of maintaining their own physical hardware. 54 These

VMs run on virtualized infrastructure provided by a cloud computing provider and can

access software and computing resources. These machines are typically fully customizable

and controlled by the user. Cloud computing VMs can be con�gured in various ways.

Some of the features of virtual machines that can be customized include memory, storage,

networking options, CPU, operating system, and the location of the data center that hosts

the VM. Cloud computing providers o�er hundreds of di�erent con�gurations, and the

user chooses the exact con�guration when requesting a VM.

In our paper, we use the number of CPU cores in a virtual machine as the key measure

of computation outcome because this is the key vertical VM characteristics that determines

computing performance. We note, however, that this approach does not take into account

heterogeneity in other characteristics, such as how much memory and network capability

is combined with the number of cores.

The unit of observation is "core hours" which refers to the amount of computing time

used by a virtual machine (VM) instance over a given period. The number of core hours

used by a VM instance is calculated by multiplying the number of CPU cores by the

number of hours the instance is running. For example, if a user runs a VM instance with 4





usage than the same �rm's usage in the months immediately preceding and following the

month. We also �lter these by minimum size change, to ensure that we are not spuriously

removing small �rms with more volatile usage. This cleaning removes less than 0.1 percent

of observations. We also worked with internal employees to conduct some minor cleaning

to remove a small fraction of �rms whose observations are a�ected by the introduction

and phaseout of older service models for our provider.

We then construct our sample by conditioning on continuous �rm observation for

one full year exactly two years before the GDPR. Although the resulting sample of �rms is

smaller, conditioning on the continuously observed �rms does not signi�cantly change the

share of data that we observe. In fact, these continuously observed �rms are responsible

for about 90 percent of storage and computation before the GDPR. We present summary

statistics on these sets of �rms below in Table OA-1. While for con�dentiality, we cannot

provide direct comparisons between the number of �rms before and after this conditioning,

the mean storage and compute are given relative to a baseline normalization of 1,000 mean

units of storage for our baseline sample in Table 2. We can see that our we restrict to a

larger sample of �rms in our baseline sample.

Table OA-1: Summary Statistics: Before Conditioning on Observation Period

Industry
Share Share Share Mean Mean Share

of Firms Compute Storage Storage Compute EU

Software 18.0 20.6 16.6 341 331 58.6
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Aberdeen dataset (either by using the parents or the subsidiaries' name). We sequentially

match using the following criteria and say that two �rms are a match if both:

1. Share the same DUNS number, or

2. Share the same website, or

3. Are in the same postal code and the name distance is less than 0.1, or

4. Are in the same city and the name distance is less than 0.08, or

5. Are in the same state and the name distance is less than 0.07, or

6. Are in the same country and the name distance is less than 0.065, or

7. Are in the same region (e.g., EU) and the name distance is less than 0.045.

Suppose a �rm in the cloud computing data has multiple matches in the Aberdeen data.

In that case, we hierarchize based on the same order as we list our criteria above.56Note

that we also allow for �looser� string matching when the geographic region in which we

search for a given �rm is smaller. These cuto�s were chosen by visually inspecting the

data and balancing the false-positive and false-negative matches.

With this procedure, we are able to match close to 60% of �rms in our baseline sample

to Aberdeen �rms. We use this matched sample to study the heterogeneity of our result

based on �rm's employment size. The change of �rm employment over time is not as

reliable at Aberdeen as the employment information does not change for a signi�cant

number of �rms over time. For this reason, we use the employment information in 2018

to de�ne �rm size.

C.3.2 Aberdeen Cross-check with Internal Data

Even though Aberdeen was widely used to measure IT spending in the 2000s, the data

has undergone changes in recent years, broadening its focus from hardware spending

to software adoption. While hardware expenditure predominantly relied on surveys,

the information on technology adoption at a larger scale mainly relies on web scraping,

publicly available information, and extrapolation. This raises the question of how reliable

the Aberdeen data is for technology adoption information. We �nd ourselves in a unique

56For example, for a �rm in the cloud computing data that we match by criteria (1) and (3) to di�erent �rms in
the Aberdeen data, we only keep the match in criteria (1), given that DUNS numbers are designed as unique
�rm identi�ers.
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position to o�er a partial answer to this question because we possess internal data from

one of the largest cloud providers and cross-check Aberdeen data for this provider.

To implement this, we utilize the matched Aberdeen-internal data sample to investigate

whether Aberdeen accurately reports the adoption of our cloud computing provider. In

particular, we examine the true positive and false negative rates: (i) the proportion of actual

users of our cloud product that are correctly labeled, and (ii) the proportion of users who

do not use our cloud product that are correctly labeled. We �nd that the true positive rate

is 64 percent, increasing with �rm size, and the true negative rate is 66 percent, decreasing

with �rm size. This result suggests that while the Aberdeen data is not 100% accurate, it

still provides a valuable signal about cloud adoption.
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D Robustness Checks

This Appendix goes through the most critical threats to identi�cation. We �rst study

substitution to other providers in Appendix D.1. We then investigate whether di�erential

price changes (between the EU and the US) may be driving our results in Appendix D.2.

We study �rms with and without website usage (to measure the extent to which cookie

collection drives our results) in Appendix D.3. Finally, we show that our results are robust

to alternative choices of empirical strategies, sample selection procedures, and extensive

margin / attrition in Appendix D.4.

D.1 Substitution to Other Providers

This section documents that substitution (to other cloud providers or to in-house IT ser-

vices) is unlikely to drive our results. We provide a battery of exercises, each of which

shows that substitution is unlikely to generate the patterns we observe in the data.

Substitution to Other Cloud Providers �Multi-cloud� usage�where �rms get cloud

services from multiple cloud computing providers�-is common among �rms. Industry

surveys suggest that 70 percent of cloud users are multi-cloud. Multi-cloud usage could

be a potential issue because we observe usage from only one cloud computing provider,

leading to incomplete data on cloud usage. If the GDPR changed the relative attractiveness

between our cloud computing provider and other providers, perhaps in terms of how easily

they accommodated GDPR regulations, then there could have been a di�erential change

in our provider's market share in Europe and the US around the GDPR. This would pose

an identi�cation challenge for us.

In particular, we might attribute a decline in cloud storage and computing to �rms

simply switching their cloud usage to other providers. We note, however, that �rms that

conduct both storage and computing are likely to do both with the same provider because

data cannot be stored with one provider but processed with another. For example, there

are essentially no observations where a �rm uses cloud computing with our provider

without using cloud storage. Thus, our data intensity results should be less a�ected by

any changes in the relative attractiveness of cloud providers.

We attempt to address the identi�cation challenge to our storage and computing results

with three additional exercises. First, we bring an external dataset, Aberdeen, that provides

information on �rms' technology adoption and which vendors they get cloud services

from. Using this dataset, we look at our provider's share of �rms that receive services

from each of the top cloud providers in Europe and US before and after GDPR and plot
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them in Appendix Figure OA-5. We �nd that the share of �rms that are using our cloud

provider has moderately increased over time, while the share of �rms using the other

cloud providers has decreased. Thus, we do not expect the relative attractiveness of the

cloud provider that we observe to have decreased after GDPR.

Figure OA-5:



Figure OA-6: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(Excluding Multi-Cloud Firms)

(a) Storage (b) Compute

(c) Data Intensity

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator. The coe�cient in the quarter before the GDPR's implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Gray bars represent the 95 percent
con�dence intervals, and standard errors are clustered at the �rm level. Sample sizes are presented in Table
OA-2. The sample is composed of �rms that do not use multiple cloud computing providers.
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Table OA-2: Short- and Long-Run E�ects of GDPR
(Excluding Multi-Cloud Firms)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run E�ect -0.128 -0.085 -0.061
(0.020) (0.019) (0.023)

Long-Run E�ect -0.258 -0.170 -0.121
(0.027) (0.028) (0.034)

Observations 944,982 530,123 328,973
US Firms 13,166 7,891 4,152
EU Firms 14,112 7,415 4,832

Notes: Table presents estimates of equation (2) of the short-run (� 1) and long-run ( � 2) coe�cients, which
estimate the impact of the GDPR in the �rst and second year after the GDPR came into force. Column
(1) estimates the e�ect on storage. Column (2) estimates the e�ect on computation. Column (3) presents
estimates of the data intensity. The sample excludes multi-cloud �rms as described in Appendix D. Industries
are de�ned as the ten divisions classi�ed by SIC codes, with the addition of a "software" division, which
we carve out of the services division and de�ne through SIC codes 7370 - 7377. Pre-GDPR size deciles are
measured thirteen months before the GDPR. For data intensity, we de�ne �size decile� as the interaction
between storage and compute terciles when measured in the period. Standard errors are clustered at the
�rm level.

of a large decrease in both compute and storage alongside a decrease in data intensity.

Thus, the results from our balanced panel in Appendix Table OA-3 and Appendix Figure

OA-7 suggest that the declines in computation and storage we observe are not driven by

switching between providers.

Substitution to Traditional IT Next, we consider that �rms might use both traditional IT

and cloud computing. To the extent that we cannot observe traditional IT usage, declines in

cloud computing may re�ect re-allocations towards traditional IT rather than true declines

in computing. While increasing cloud computing adoption rates suggest that this margin

may not play an important role, we consider the possibility that post-GDPR, European

�rms might have changed allocation between two ITs di�erently from the US �rms.

This would invalidate our identi�cation arguments for the e�ects of compute and

storage, though it should not necessarily a�ect the results on data intensity. To provide

a robustness check for this, we focus on start-ups, which are unlikely to be switching to

traditional IT. These are young software �rms for which the upfront costs of traditional IT

make it unlikely for them to switch towards these technologies as they are likely to face

larger costs than e.g., more established �rms. In Appendix Table OA-4 and Figure OA-8,

we actually �nd larger e�ects for these �rms rather than smaller e�ects. This suggests that

the observed declines in computing and storage are unlikely to be driven by substitution
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Figure OA-7: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(Balanced Panel Estimates)

(a) Storage (b) Compute

-.3-.2-.10.1.2-8-6-4-20246Quarter Relative to GDPR (June 2018)Percent Change in Computation

(c) Data Intensity

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator. The coe�cient in the quarter before the GDPR's implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Gray bars represent the 95 percent
con�dence intervals, and standard errors are clustered at the �rm level. Sample sizes are presented in Table
OA-2. The sample is a balanced panel, and details can be found in Appendix Section D.
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Table OA-3: Short- and Long-Run E�ects of GDPR
(Balanced Panel Estimates)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run E�ect -0.221 -0.115 -0.046
(0.024) (0.020) (0.027)

Long-Run E�ect -0.373 -0.205 -0.104
(0.030) (0.029) (0.037)

Observations 608,562 363,793 227,022
US Firms 7,588 5,126 2,872
EU Firms 7,953 4,112 2,849

Notes: Table presents estimates of equation (2) of the short-run (� 1) and long-run ( � 2) coe�cients, which



Figure OA-8: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(Start-Up Firms)

(a) Storage (b) Compute

(c) Data Intensity

-.3-.2-.10.1-8-6-4-20246Quarter Relative to GDPR èJuneS
Q
7éPercent Change in Ratio of Storage to Compute

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator. The coe�cient in the quarter before the GDPR's implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Gray bars represent the 95 percent
con�dence intervals, and standard errors are clustered at the �rm level. Sample sizes are presented in
Table OA-4. The sample is composed of start-up �rms, where start-ups are labeled according to a de�nition
internal to the cloud provider.
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D.2 Price Changes

One natural channel through which the GDPR may have a�ected �rms is through price

changes in cloud computing. This would suggest our results might capture pricing re-

sponses by cloud providers rather than the GDPR's direct impact on �rms. For example,

if cloud computing providers increase their prices in the European Union relative to the

United States, this could confound our estimates. While conversations with internal em-

ployees suggest that there were no explicit pricing responses to the passage of the GDPR,

we also examine the data for evidence of any di�erential pricing trends between the EU

and the US, either in listed or paid prices. Appendix Figure OA-9 presents our results

when we estimate our event study speci�cation using paid prices as the outcome. We �nd

no evidence of signi�cant di�erential price changes.

Figure OA-9: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(E�ects on Paid Prices)

(a) Storage Prices (b) Compute Prices



choose to opt out of data collection and how valuable the remaining data is.

We aim to study whether our main e�ects are driven by the GDPR's e�ect on websites

and how important the selection channel might be for our sample. To examine whether

or not web usage is driving our e�ects, we turn towards Table OA-5, where we proxy



Table OA-5: Short- and Long-Run E�ects of GDPR
(Heterogeneous E�ects by Usage of Cloud-Based Web Services)

Baseline Web Users Non-Web Users
(1) (2) (3)

Panel A. Dependent variable: Log of Storage

Short-Run E�ect -0.129 -0.242 -0.080
(0.018) (0.020) (0.010)

Long-Run E�ect -0.257 -0.421 -0.174
(0.024) (0.024) (0.015)

Observations 1,143,149 255,057 888,092
US Firms 16,409 3,632 12,777
EU Firms 16,281 3,166 13,115

Panel B. Dependent variable: Log of Compute

Short-Run E�ect -0.078 -0.124 -0.026
(0.016) (0.011) (0.010)

Long-Run E�ect -0.154 -0.241 -0.060
(0.024) (0.018) (0.019)

Observations 672,942 343,286 329,656
US Firms 10,294 5,243 5,051
EU Firms 8,927 4,297 4,630

Panel C. Dependent variable: Log of Data Intensity

Short-Run E�ect -0.072 -0.066 -0.084
(0.020) (0.013) (0.013)

Long-Run E�ect -0.131 -0.118 -0.112
(0.029) (0.023) (0.024)

Observations 418,804 198,352 220,452
US Firms 5,487 2,714 2,773
EU Firms 5,872 2,608 3,264

Notes:Table presents estimates of equation (2) of� 1 and � 2, splitting our sample separately into �rms that
were observed using cloud-based web services with our provider between 24 and 13 months before the
GDPR and those which were not. For comparison, Column (1) presents our baseline estimates across the
full sample. Standard errors are clustered at the �rm level.
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Table OA-6: Short- and Long-Run E�ects of GDPR
(Monthly Speci�cation)

Storage Compute Data Intensity
(1) (2) (3)

Short-Run E�ect -0.141 -0.085 -0.079
(0.018) (0.017) (0.021)

Long-Run E�ect -0.291 -0.174 -0.136
(0.026) (0.027) (0.033)

Observations 1,143,149 672942 418,803
US Firms 16,409 10,294 5,487
EU Firms 16,281 8,927 5,872

Notes:Table presents estimates of equation (2) of� 1 and � 2, but where we allow our time trends to vary at
the monthly level rather than the quarterly-level. Industries are de�ned as the ten divisions classi�ed by
SIC codes, with the addition of a "software" division, which we carve out of the services division and de�ne
through SIC codes 7370 - 7377. Pre-GDPR size deciles are measured thirteen months before the GDPR.
For data intensity, we de�ne �size decile� as the interaction between storage and compute terciles when
measured in the period. Standard errors are clustered at the �rm level.

uses log¹Gº. In Appendix Table OA-7 below, we consider using asinhand log¹G¸ 1º. We

�nd essentially no di�erence between these transformations, suggesting that our results

are not sensitive to the behavior of our outcome transformations around zero.

Table OA-7: Short- and Long-Run E�ects of GDPR
(Alternative Transformations)

Baseline Asinh Log(x + 1)
(1) (2) (3)

Storage:

Short-Run E�ect -0.129 -0.129 -0.126
(0.018) (0.018) (0.019)

Long-Run E�ect -0.257 -0.257 -0.253
(0.024) (0.025) (0.026)

Compute:

Short-Run E�ect -0.078 -0.077 -0.076
(0.016) (0.016) (0.016)

Long-Run E�ect -0.154 -0.153 -0.153
(0.024) (0.024) (0.025)

Notes: Table presents estimates of equation (2) of the short-run (� 1) and long-run ( � 2) coe�cients, which
estimate the impact of the GDPR in the �rst and second year after the GDPR came into force. Column (1)
shows our baseline speci�cation with the natural lograithm of G. Column (2) transforms outcomes using the
inverse hyperbolic sine. Column (3) transforms outcomes by taking the logarithm (base 10) of G¸ 1.



Alternative Sample De�nitions We also discuss the robustness of our analyses in Section

4 to alternative sample de�nitions. In particular, we show that our estimated coe�cients

are relatively stable when estimated when conditioning on a di�erent window of pre-

GPDR usage, and when using a larger and more inclusive de�nition of ��rms" where we

don't require any internal or external industry or operating information.

First, we consider alternative windows of pre-GDPR usage. In our baseline sample,

we use �rms for whom we observe cloud usage continuously for a whole year exactly

two years before the GDPR. Appendix Table OA-8 presents estimates from the samples

constructed by instead conditioning on continuous observation one-year before the GDPR

(column 2) and both years before the GDPR (column 3).

Table OA-8: Short- and Long-Run E�ects of GDPR
(Alternative Pre-GDPR Usage Windows)

(1) (2) (3)

Storage:

Short-Run E�ect -0.129 -0.101 -0.144
(0.018) (0.029) (0.024)

Long-Run E�ect -0.257 -0.283 -0.299
(0.024) (0.039) (0.034)

Compute:

Short-Run E�ect -0.078 -0.078 -0.083
(0.016) (0.021) (0.021)

Long-Run E�ect -0.154 -0.178 -0.178
(0.024) (0.033) (0.033)

Data Intensity:

Short-Run E�ect -0.072 -0.066 -0.063
(0.020) (0.023) (0.023)

Long-Run E�ect -0.131 -0.128 -0.121
(0.029) (0.035) (0.035)

Usage Observed During Year:
Two Years Before GDPR X X
One Year Before GDPR X X

Notes: Table presents estimates of equation (2) of the short-run (� 1) and long-run ( � 2) coe�cients, which
estimate the impact of the GDPR in the �rst and second year after the GDPR came into force. Column
(1) shows our baseline speci�cation. Column (2) conditions on observing �rms for the year before GDPR
(instead of two years before). Column (3) restricts the sample to �rms continuously observed for the full two
years before GDPR. Industries are de�ned as the ten divisions classi�ed by SIC codes, with the addition of
a "software" division, which we carve out of the services division and de�ne through SIC codes 7370 - 7377.
Pre-GDPR size deciles are measured thirteen months before the GDPR. For data intensity, we de�ne �size
decile� as the interaction between storage and compute terciles when measured in the period. Standard
errors are clustered at the �rm level.
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Finally, we consider using a larger and more inclusive de�nition of ��rms". Per Ap-

pendix C, we de�ne �rms in our baseline sample by requiring that there be either internal

or external information on the �rm's industry and country. In this larger sample, we drop



Figure OA-10: Event Study Estimates of the E�ect of GDPR on Cloud Inputs
(Di�erential Attrition)

(a) Storage Sample (b) Compute Sample

Notes: Figure presents estimates of equation (1) of � @, the coe�cient on the quarter of the move interacted
with our treatment indicator. The coe�cient in the quarter before the GDPR's implementation is normalized
to zero. The outcome in each subpanel is denoted by the subpanel title. Gray bars represent the 95 percent
con�dence intervals, and standard errors are clustered at the �rm level. In contrast to the main �gures, the
dependent variable is an indicator for whether the �rm has exited our sample.
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E Technical Appendix

This section provides the derivation of the results in Section 5.

E.1 First-order Conditions

Assume that �rms produce according to the following production function:

H8C= 5¹- 8C– �8C–$ 8Cº–

where �8Crepresents information, - 8Cis a vector of other observed inputs, and $ 8Crepresents

unobserved inputs. We assume that the information is produced according to the following

technology:

�8C=
�
$ 2

8C¹� 8Cº� ¸  � �
8C

� 1• � •

Without loss of generality, we can normalize  = 1 due to the homotheticity of the CES

production function:
�
$ 2

8C¹� 8Cº� ¸  � �
8C

� 1• � =  �
�
$ 2

8C•  ¹� 8Cº� ¸ � �
8C

� 1• � .

We assume that �rms choose variable inputs to minimize the cost of production taking

prices as given, a necessary condition for pro�t maximization. We also assume that �rms

take productivity $ 2
8Cas given which follows an exogenous process. This cost minimization

problem can be written as:

min
� 8C–� 8C

?2
8C� 8Ç ?3

8C� 8Ç ?G
8C-

E
8C s.t. 5¹- 8C– �8C–$ 8Cº � ¢. 8C–

where ¢. 8Cis the target level of production and - E
8Cdenotes variable inputs. The FOCs with

respect to � 8Cand � 8Ccan be written as:

� 8C52¹- 8C– �8C–$ 8Cº
�
$ 2

8C¹� 8Cº� ¸ � �
8C

� 1•¹ � � 1º� � ¹� � 1º
8C F 2

8C= ?2
8C

� 8C52¹- 8C– �8C–$ 8Cº
�
$ 2

8C¹� 8Cº� ¸ � �
8C

� 1•¹ � � 1º� � ¹� � 1º
8C = ?3

8C

where � 8Cis the Lagrange multiplier. Taking the ratio of the two FOCs, we obtain:

� � 8C

� 8C

� ¹� � 1º
$ 2

8C=
?2

8C

?3
8C

OA - 31



Taking the logarithm and rearranging the terms yields:

¹1 � � º log
� � 8C

� 8C

�
� log¹$ 2

8Cº = log
� ?3

8C

?2
8C

�
(13)

By using � = 1•¹ 1 � � º, we can obtain Equation (3) as presented in the main text

log
� � 8C

� 8C

�
= � log

� ?3
8C

?2
8C

�
¸ � log¹$ 2

8Cº• (14)

E.2 Including Labor in Information Production Function

In this section, we demonstrate that the derivation of the FOCs remains valid even if the

information production function includes labor input in the CES form. We consider labor

in the information production function because �rms might require software engineers to

process data. To illustrate this scenario, we consider a nested CES form where data and

computation are nested:

�8C=
� �

$ 2
8C¹� 8Cº� ¸ � �

8C

� E• � ¸  ! ! E
8C

� 1• E

Taking the �rst-order conditions with respect to � 8Cand � 8C, we obtain:

� 8C52¹- 8C– �8C–$ 8Cº
� �

$ 2
8C¹� 8Cº� ¸ � �

8C

� E• � ¸  ! ! E
8C

� 1• E� 1 �
$ 2

8C¹� 8Cº� ¸ � �
8C

� E•¹ � � 1º� � ¹� � 1º
8C F 2

8C= ?2
8C

� 8C52¹- 8C– �8C–$ 8Cº
� �

$ 2
8C¹� 8Cº� ¸ � �

8C

� E• � ¸  ! ! E
8C

� 1• E� 1 �
$ 2

8C¹� 8Cº� ¸ � �
8C

� E•¹ � � 1º� � ¹� � 1º
8C = ?3

8C

Taking the ratio of these FOCs yields the same equation as above:

� � 8C

� 8C

� ¹� � 1º
$ 2

8C=
?2

8C

?3
8C

•

Therefore, the information production function can accommodate labor. It is important to

note that this result relies on the speci�c nested CES functional form used in this analysis.

For instance, if data and labor were nested, the ratio of FOCs would involve labor and our

equivalence result would break down.

E.3 Derivation for Cost of Information

In this section, we derive the formula for the cost of information given by Equation (10). To

ease notation, we drop the subscript and use ?2 and ?3 to denote the price of computation
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and data, respectively. We also use$ in place of $ 2. From the �rst-order conditions, we

obtain:

� 1� � =
?2

?3

1
$

� 1� � – (15)

which yields:

?� •¹ � � 1º
3 � � $ � •¹ � � 1º = ?� •¹ � � 1º

2 � � •

Adding ?� •¹ � � 1º
2 $ � � to both sides of Equation (15) and simplifying yields:

�? 2
�
?� •¹ � � 1º

2 $ ¸ $ � •¹ � � 1º?� •¹ � � 1º
3

� 1• � = ?� •¹ � � 1º
2

�
� � ¸ $ � � � 1• � • (16)

Similarly, adding $ 1•¹ � � 1º?� •¹ � � 1º
3 � � to Equation (15) and simplifying yields:

�? 3
�
?� •¹ � � 1º

2 $ ¸ $ � •¹ � � 1º?� •¹ � � 1º
3 º1• � = $ 1•¹ � � 1º?� •¹ � � 1º

3

�
� � ¸ $ � � � 1• � • (17)

Adding Equations (16) and (17) and using � =
�
� � ¸ $ � �

� 1• � , we arrive at:

�
�? 3 ¸ �? 2

�
$ 1• � = �

�
$ 1•¹ � � 1º?� •¹ � � 1º

3 ¸ ?� •¹ � � 1º
2

� ¹� � 1º• � •

To derive the cost of information, we need to express the sum
�
�? 3 ¸ �? 2

�
as a function of

� and prices. We do this by isolating the sum on one side of the equation:

�
�? 3 ¸ �? 2

�
= �

�
?� •¹ � � 1º

3 ¸ $ 1•1� � ?� •¹ � � 1º
2

� ¹� � 1º• �

= �

 

¹$ º�
� 1
?2

� � � 1
¸

� 1
?3

� � � 1
! 1•¹ � � 1º

•

Finally, using � = 1•¹ 1 � � º, we arrive at the desired cost function equation.

�� � ¹�8C– ?8Cº = �8C

 

¹$ 2
8Cº

�
� 1
?2

8C

� � � 1
¸

� 1

?3
8C

� � � 1
! 1•¹ � � 1º

•

E.4 Cost of Information Decomposition

In this section, we derive the formula for the decomposition of the cost of information

given by Equation (11). We drop all subscripts to ease notation and start by substituting
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the values for the cost minimizing information cost, �� � , as:

�� � ¹�– ?–� º = ?2� � ¹�– ?–� º ¸ ?3� � ¹�– ?–� º

where � � ¹�– ?–� º and � � ¹�– ?–� º are the arguments of the cost-minimizing function. We

will remove the function arguments to ease out notation even more. The total derivative

with respect to � is obtaining by di�erentiating both sides with respect to � :

d�� �

d�
= ?2

dC�

d�
¸ ?3� � ¸ ?3¹1 ¸ � º

dD �

d�

Multiplying both sides by � • �� � we obtain:

d�� �

d�
�

�� � = ?2
dC�

d�
�
� � ¸ �

�
?3� �

� � �

�
¸ ?3¹1 ¸ � º

dD �

d�
�
� �

Rearranging terms, and multiplying the �rst term by � � • � � , and the third by � � • � � we get

d�� �

d�
�

�� � = �

�
?3� �

� � �

�
¸

�
?2� �

� � �

� �
dC�

d�
�
� �

�
¸

�
?3¹1 ¸ � º� �

� � �

� �
dD �

d�
�
� �

�

and �nally recognizing that the terms in parenthesis are the expenditure shares B3 and B2,

and the terms in squared parenthesis are the elasticities, we get to Equation (��



F Model Estimation Details

This section provides details on cloud computing pricing, the instrumental variable strat-

egy, our estimation procedure, and intuition for our identi�cation.

F.1 Cloud Computing Pricing

Our estimation of the elasticity of substitution is identi�ed by how �rms adjust their input

demand to price changes. To provide context for the main sources of price variation, this

subsection presents an overview of pricing in cloud computing.

Cloud computing providers typically consider a variety of factors when choosing cloud

prices in di�erent locations. Some of these factors may include the cost of electricity, the

availability of skilled labor, the cost of real estate, tax incentives, regulatory requirements,

and the availability and cost of network connectivity. Additionally, �rms may consider the

level of competition in each location and the pricing strategies of di�erent cloud providers.

The pricing of cloud services in the last decade has been characterized by a steady

decline across all providers. As cloud providers have achieved economies of scale and

improved their technological infrastructure, they have been able to o�er lower prices

to customers. In addition, increased competition among cloud providers in attracting

customers has also contributed to lower prices. Byrne et al. (2018) constructs a price

index for AWS over the last decade and investigates how prices have evolved. They found

that AWS computation prices fell at an average annual rate of about 7 percent, database

prices fell at an average annual rate of more than 11 percent, and storage disk prices

fell at an annual rate of more than 17 percent. Part of this price decline is driven by

competition. Byrne et al. (2018) �nds that AWS prices dropped more signi�cantly when

Microsoft Azure entered the market, at 10.5 percent, 22 percent, and about 25 percent for

computation, database, and storage, respectively, between 2014 and 2016

The last decade has seen a notable trend of declining cloud prices despite increasing

demand. This suggests that factors such as competition and technological advances have

been the major drivers of cloud pricing in the last decade.

F.2 Price Index Construction

Our instrumental variable strategy relies on constructing �rm- and location-speci�c price

indices. This section describes how we construct those price indices.

To obtain �rm-speci�c price indices, we simply calculate the unit price paid by the �rm

by dividing the monthly total spending on compute and storage by the total quantity of
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and the cloud service provider, it is typically considered too costly by industry experts.

We use the persistance in data center location that comes from switching cost to design

a shift-share instrumental variable strategy. Formally, each �rm has exposure to di�erent

locations and pays di�erent prices in each location due to variations in list prices and

�rm-speci�c discounts. We denote �rm speci�c price indices by ?3
8Cand ?2

8Cfor data

and computation, respectively. This price could be endogenous because the �rm may

negotiate lower prices or change its exposure to di�erent locations based on productivity.

To instrument for these prices, we use the list prices of storage in location ;, given by ?;C.

This price is plausibly exogenous to changes in �rm productivity because, after controlling

for industry-speci�c trends, no �rm is likely to a�ect list prices in a speci�c location.

Additionally, we attempt to further purge these shares of endogeneity by taking lags, as

contemporary shares may be susceptible to reverse causality. Hence, our instrument for

data is given by I 3
8C=

Í
B3

8¹C� 12º;?
3
;Cfor storage and I 2

8Cfor computation calculated similarly.

Finally, we use I 2
8C• I 3

8Cto instrument for ?2
8C• ?3

8Cin the production function estimation.

Since we need the 12 months lagged exposure of each �rm, we lose the �rst 12 months of

observations when implementing this instrumental variable strategy.

F.4 Estimation Details

Our identi�cation strategy relies on the assumptions that the industry-speci�c cloud pro-

ductivity trend in Europe would have followed that of US �rms in the absence of GDPR,

and that �rm-speci�c compute technology does not change post-GDPR. To operationalize

these assumptions, we follow a two-step estimation strategy

In the �rst step, we estimate the following equation for US �rms using the entire sample

period with our IV strategy:

log
� � 8C

� 8C

�
= � ¸ � *(

1 log
� ?3

8C

?2
8C

�
¸ � *(

1 log¹$ 2
8º ¸ � *(

1 log¹) 2
Cº ¸ � *(

1 log¹� 8Cº– (18)

When estimating this equation, we normalize � to zero because it is not separately identi-

�ed from the mean of $ 2
8. We also normalize ) 2

1 to 1 so that productivity trend is relative to

the initial period. Since, by assumption, the US �rms have not been exposed to GDPR, this

equation identi�es the industry-speci�c compute productivity trends, or  ) 2
C in Equation

(9). By Assumption (2), the EU industries follow the same trend and we use the estimated
 ) 2

C for EU �rms. 58 Next, we estimate the same equation using EU �rms only with pre-

GDPR data. This estimation identi�es  $ 2
8 in Equation (9) because there is no distortion

58We also estimate Equation (18) using pre- and post-GDPR data for US �rms to separately identify the
elasticity of substitution before and after the implementation of GDPR.
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before GDPR to estimate � �*
1 . We report the associated elasticity estimates in Figure 4 as

the pre-GDPR elasticity of substitution estimates.

These �rst-step estimations identify provide us with  $ 2
8 and  ) C. Using those we �nally

estimate Equation (9):

log
� � 8C

� 8C

�
= � 2 ¸ � �*

2

�
log

� ?3
8C

?2
8C

�
¸ log¹  ) Cº

�
¸ � �*

2

�
log¹1 ¸ � 8º ¸ log¹  $ 2

8º
�

¸ log¹� 8Cº•

by constructing the right-hand side variable. We report � �*
2 as the post-GDPR elasticity of

substitution estimates in Figure 4. To estimate the wedge, � 8, we subtract log¹  $ 2
8º from the

estimated �xed e�ects in Equation (9) (after accounting for � �*
2 ). We report the estimates

of � 8 in Figure 5. To account for uncertainty in �rst-step estimates in standard errors, we

follow a bootstrap procedure with 100 repetitions. We resample �rms with replacement

in each industry-continent group and apply the entire estimation procedure.

We use Equation (10) to estimate the change in the cost of information, with results

reported in Section 6.3. For the estimated $ 2
8, we calculate the cost of information by

setting � 8 to its estimated value and 0, which gives us the change in the cost of information

due to GDPR. Since prices change over time, we calculate this change in information cost

at every observed price point and report the distribution at the month-�rm level.

To do the decomposition presented in Equation 11, we calculate the cost share of data

every period using �rm's data input demand and prices. The direct e�ect is obtained

by multiplying the data share with �rm-speci�c wedges. The second term (�rm re-

adjustment) is obtained by subtracting the direct e�ect from the change in the cost of

information. Similar to above, we calculate this change in information cost at every

observed price point and report the distribution at the month-�rm level.

F.5 Identi�cation Intuition for the Firm-Speci�c Wedges

Having outlined our estimation strategy in the previous subsection, we now explain how





changes in the compute intensity (the negative of the data intensity) to be those that have

larger wedges.

Reassuringly, the intuition we explain above is also consistent with our estimated

wedges. Recall that we show in the paper that �rms became less data-intensive (equiv-

alently, more compute-intensive) after GDPR. Importantly, we show that industries with

larger changes in compute-intensity are those with larger wedges. Panel C of Table 4 shows

that the changes in the data intensity are smaller (in absolute value) for manufacturing

�rms, followed by non-software services, and then by software services. Similarly, our

average wedge estimates (shown in Figure 5) have the same ordering: manufacturing �rms



G E�ects on Production Costs

G.1 The E�ect of Changes in Information Costs on Production Costs

In this section, we consider how changes in information costs translate into changes in

production costs under various benchmark production function speci�cations. Per Section

6.4, the spirit of this exercise to provide a back-of-the-envelope calculation for the total

increase in the cost of producing goods and services arising from the change in the cost of

data storage. As such, we leverage the assumption that �rms face linear prices for labor

and capital and that the cost function is given by:

�
� ¢.– ?–�

�
= ?! ! � � ¢.– ?–�

�
¸ ?  � � ¢.– ?–�

�
¸ ?� � � � ¢.– ?–�

�
•

We �rst consider the two edge cases�Leontief and linear production functions�where

information is a perfect complement and a substitute for other inputs. These provide us

with intuitive bounds for how changes in the costs of information might translate into

production costs. Finally, we consider an intermediate case with Cobb-Douglas production

technology and derive a simple equation for how changes in information costs translate

into production costs after �rms re-optimize between inputs.

Leontief Production Function

We �rst consider the simple case of a Leontief production function, where inputs must be

combined in �xed proportions:

. = min

�
!


–
 
�

–
�
�

�
•

Cost minimization immediately implies that for any given level of production, the input

demand functions are given by:

! � =  ¢.

 � = � ¢.

� � = � ¢.

In this case, the cost function is therefore linear in prices, and a � percentage increase in

the cost of information causes an � � B�
8Cpercentage increase in the cost of production.
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Linear Production Function

The case of a linear production function is straightforward, as �rms simply choose the

most cost-e�ective input or mix between them if they are equally cost-e�ective.

. =  ! ¸ �  ¸ � �

In the interior case where �rms were previously producing with non-zero capital or non-

zero labor, cost minimization immediately implies that a � percentage increase in the cost

of information translates into a zero percentage increase in the cost of production.

Cobb-Douglas Production Function

Finally, we consider the e�ects of a � percentage increase in the cost of information for a

Cobb-Douglas production function given by

. = !   � � �

First-order conditions imply the following information demand function:

� � = ¢.
1

� ¸  ¸ � �

�
?�

�

� �  � �
� ¸  ¸ �

�

�
�

? 

� � �
� ¸  ¸ �

�

�

?!

� � 
� ¸  ¸ �

This immediately implies that a � percentage increase in?� induces a� =
h
¹1 ¸ � º�  ¸ �

� ¸  ¸ � � 1
i

percentage decrease in� � .61Next, we note that �rst-order conditions imply that a � share

of total �rm costs will be spent on information:

� =
?� � � �

� ¢.– ?–�
�

�
� ¢.– ?–�

� •

Using the change in information expenditure resulting from the � increase in information

prices and the � decrease in� � derived above, we have that a � percentage increase in?�

will lead to a � percentage increase in production costs, where � = ¹1 ¸ � º� � 1.62

61For marginal changes, using log transformations and taking derivatives yields %log �



G.2 Estimating Key Calibration Parameters

We show in the section above that under a Cobb-Douglas production technology assump-

tion, we only need to know a single parameter� � �to know how an increase in the cost

of information translates to production costs. We note that � represents the information




