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Abstract

We estimate welfare effects of dynamic price competition in the airline industry.
To do so, we introduce a general dynamic pricing game where sellers are endowed with
finite capacities and face uncertain demands toward a sales deadline. We establish suf-
ficient conditions for equilibrium existence and uniqueness, and for convergence to a
system of differential equations. With the equilibrium characterization and compre-
hensive pricing and bookings data for competing airlines, we estimate that dynamic
pricing results in higher output but lower welfare than under uniform pricing.



1 Introduction

Dynamic pricing is commonly used by firms selling fixed inventory by a set deadline.

Examples range from seats on airlines and trains, tickets for entertainment events, to reser-

vations for cruises, and inventory in retailing. In these markets, capacity influences prices

in important ways. First, prices adjust as the opportunity cost of selling changes with



Our dynamic pricing game extends earlier single-firm frameworks (Gallego and

Van Ryzin, 1994; Zhao and Zheng, 2000; Talluri and Van Ryzin, 2004) to oligopoly.1 In the

main text we focus on a duopoly where each firm offers a single product. In the appendix,

we extend our results to an arbitrary number of firms, each offering an arbitrary number

of products. Each firm is exogenously endowed with limited initial capacity that must be

sold by a deadline.2 After the deadline has passed, unsold capacities are scrapped with

zero value. Firms are not allowed to oversell. Products are imperfect substitutes and satisfy

general regularity conditions. Consumers arrive randomly according to time-varying arrival

rates with time-varying preferences. Each consumer is short-lived and decides whether to

purchase an available product or select an outside option. Our demand assumptions are

motivated by recent empirical evidence (Hortaçsu et al., 2021b). In every period, firms si-

multaneously choose prices after observing remaining capacities for all products; demand

is realized, capacity constraints are updated, and the process repeats until the perishability

date or until all products are sold out. We call this game the benchmark model.

Our model produces a rich set of equilibrium strategies because competitor prices af-

fect both current demand and opportunity costs of remaining capacity. This can create

incentives to offer fire sales as in Dilme and Li (2019), where a single firm competes with

its future self for forward-looking buyers.3 However, a firm might also want to charge a

high price in order to drive the competitor to sell out as in Martínez-de Albéniz and Talluri

(2011), where firms offer perfect substitutes.4



competitor scarcity effect is typically negative, i.e., a firm benefits from shifting demand



through Poisson arrivals, and preferences are modeled through discrete choice nested logit

demand. We use search data for one airline to inform arrival process parameters that are

then scaled up to account for unobserved searches, e.g., via online travel agencies or a

competitor's website. In total, we estimate demand for 58 duopoly routes. We �nd sig-

ni�cant variation in willingness to pay across routes and across days from departure for a

given route. In general, demand becomes more inelastic as the departure date approaches.

Average own-price elasticities are -1.4.

With the demand estimates, we simulate equilibrium market outcomes using the dif-

ferential equation characterization. This allows us to recover the own/competitor scarcity

effects and �rm strategies for all potential states—some games (route-departure dates) fea-

ture over 131 million potential states. We �nd that overwhelmingly (but not all) of the

realized stage games are of strategic complements.

We compare market outcomes of dynamic pricing to uniform pricing where each �rm

commits to a single price for each �ight over time. We �nd the opposite welfare effect com-

pared to earlier analyses, including Hendel and Nevo (2013) in retailing, Castillo (2020)

in ride-share, and Williams (2022) for single-carrier airline markets, in that dynamic pric-

ing expands output but lowers total welfare compared to uniform pricing. This occurs

because dynamic pricing softens price competition toward the departure date, despite fea-



2 Model of Dynamic Price Competition

We begin by detailing the demand assumptions that we use in our analysis in Section 2.1.

Our exposition of demand is for an arbitrary number of products. In Section 2.2 we intro-
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Assumption 1-i) ensures that the demand system is well-defined when products sell

out. The first condition in Assumption 1-iii) (Equation 1) ensures that the Jacobi matrix

Dps(p) is non-singular by the Levy-Desplanques Theorem (see e.g. Theorem 6.1.10. in

Horn and Johnson (2012)). This condition intuitively means that a price change of product

j should impact demand of product j more than it impacts the sum of demand of all other

products. The second condition in Assumption 1-iii) (Equation 2) ensures that

A



Recall that Assumption 1 guarantees that maxp2RA s(p)ü(p � c) has an interior solu-

tion. Assumption 2 guarantees that the system of first-order conditions of this problem has

a unique solution. Together, these assumptions replace the assumption of log-concavity

commonly made in single-product, single-firm setting.

We now omit the conditioning arguments � and A in demand and demand elasticities

whenever the meaning is unambiguous. When the time index is relevant, we write sj ,t (p) :=

sj (p; � t ,A t ). Further, we let the probability of choosing the outside option be equal to

s0,t (p) := 1 �
P

j 2J
sj ,t (p).

2.1.1 Parametric Demand Models

We illustrate theoretical insights with a simple logit demand specification, i.e.,

sj ,t (p) =
exp

¦
� j � �t p j

�

©
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j 02A t
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¦
� j 0� �t p j 0

�
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We set � t = �t so that �t =� is the time-variant marginal utility to income, and � > 0 is a

scaling factor. The parameter � j =� is the product-specific value of product j . Note that

when � ! 0, competition collapses to standard Bertrand. As � ! 1 , products become

perfectly differentiated. In our empirical analysis, we consider the more flexible nested

logit demand model. Both classic logit and nested logit demand functions satisfy Assump-

tions 1 and 2 (see Appendix C).

2.2 Single Firm Model

We first discuss a single firm, multi-product dynamic pricing model with two goals in mind.

The first is to introduce supply-side notation that we carry over to the competitive model.

The second is to showcase that the single-firm problem is well behaved and exhibits nice

properties. All of them fail in the oligopoly model.

A single firm M offers J products for sale with an initial inventory K j ,0 2 N of each

8



product j . We do not model the initial capacity choice. Let K t



as � ! 0, which satisfies

�̇ M ,t (K) = � �t max
p

X

j 2J

sj ,t (p)
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with boundary conditions (i) � M ,T (K) = 0 for all K, (ii) � M ,t (0) = 0 for all t , and � M ,t (K) =

�1 if K j < 0 for a j 2 J .

Given a capacity vector K, corresponding available products A = f j : K j 6= 0g, and

the vector of opportunity costs ! M ,t (K) of products j 2 A , the first-order condition for

profit-maximizing prices pM ,t (K) 2 RA can be written in matrix form,

pM ,t (K) = ! M ,t (K)| {z }
opportunity costs

�
�
Dpst (pM ,t (K))

� � 1
st (pM ,t (K)))

| {z }
= �̂ (p; � ,A )

inverse quasi own-price elasticities

. (4)

Hence, the pricing policy pM ,t (K) is continuous in time and well behaved. The evolu-

tion of the price vector pM ,t (K t ) is then governed by the evolution of the random variable

representing the opportunity costs and quasi-price elasticities of demand. The following

proposition summarizes well-known properties of an optimal control problem, including

monotonicity and concavity of the value function in the capacity vector. We also derive

properties of the stochastic process governing the opportunity costs ! j ,t (K t ).

Proposition 1. The solution to the continuous-time single-firm revenue maximization prob-

lem in Lemma 1 satisfies the following:

i) � M ,t (K) is de 8.including







terminology.

Definition 1. We say that a competitor’s sale intensifies competition in a state (K, t ) if

!
f
f 0,t (K)> 0 and that a competitor’s sale softens competition in a state (K, t ) if ! f

f 0,t (K)< 0.

For a stage game with ! f
f 0,t 6= 0, we cannot apply results from Caplin and Nalebuff

(1991) or Nocke and Schutz (2018). Payoffs are also neither super-modular nor log-

supermodular (Milgrom and Roberts, 1990), and the stage game is also not a potential

game. In the next section, we derive conditions on the stage game that guarantee unique-

ness of equilibrium outcomes to show in how far Lemma 1 generalizes to a duopoly.

3 Analysis of the Duopoly Model

In this section, we derive theoretical properties of the dynamic pricing game. We start

with an analysis of uniqueness and continuity of stage game equilibria, which allows us to

generalize Lemma 1. We also provide additional theoretical insights on competition, the

role of capacity, and pricing dynamics.

3.1 Equilibrium Existence, Uniqueness, and Continuity

3.1.1 Sufficient Condition for Equilibrium Uniqueness in the Stage Game

We consider the stage game for an arbitrary matrix of opportunity costs 
 . We drop the

time index and capacity argument in all expressions temporarily. Our first result presents

sufficient conditions for existence and uniqueness of an equilibrium of the stage game.

Recall that the best responses of both firms are uniformly bounded by Assumption 1-(iii)

and hence, must satisfy a first-order condition. We can write the first-order condition of

firm f ’s profit maximization problem as

g f (p) = p f ,
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where

g f (p) := !
f
f +

@ sf 0

@ p f
(p)
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By Kellogg (1976),10 the following assumption then guarantees that there is a unique solu-

tion to this system of equations.

Assumption 3. Suppose the following two conditions hold:

i) @ g f

@ p f
(p) � 1 6= 0 for all p and f = 1,2;

ii) det

�

Dp

�
g(p)

�
� I

�

6= 0 for all p, where g(p) := (g1(p),g2(p)).

To better understand Assumption 3, first note that with a single firm, the assumption

guarantees that the first-order condition of the firm is either increasing or decreasing ev-

erywhere in its price. Assumption 3-(i) is always satisfied for demand functions that are

log-concave in each dimension. Mathematically, Assumption 3-(ii) is related to Assump-

tion 2, but the inverse quasi-own price elasticity is replaced by the function g(p). If the

competitor scarcity effect is zero, one can see from Equation (6) that Assumption 2 implies

Assumption 3. If the competitor scarcity effect is not zero, the first-order condition is more

complex than in the single-firm setting since the net opportunity cost of selling depends on

the ratio of derivatives of the demand of the two firms.

Lemma 2. Let Assumptions 1, 2 and 3 hold. Then, the stage game admits a unique equi-

librium.

Note that Lemma 2 establishes uniqueness and existence simultaneously. Under the

commonly made assumption of independence of irrelevant alternatives (IIA) that is satisfied



uniqueness for arbitrary stage games. In the next subsection we provide an example for 


that yield multiple equilibria.

3.1.2 Continuity of Equilibrium Prices in Scarcity Effect Matrix 


Next, we study the stage game parameterized by scarcity effects 
 and demand parameters

� . We show that if 
 and � remain in a compact neighborhood in which the stage game

admits a unique solution, then equilibrium prices denoted by p � (
 , � ) are continuous in


 and � . Consequently, a small change in the opportunity costs does not change prices

substantially. In the dynamic game, as long as no sales occur, prices do not jump over time

provided 
 and � stay in the compact neighborhood. This property turns out useful for

generalizing Lemma 1 and simulating equilibrium price paths.

Lemma 3. Let Assumptions 1 and 2 hold. If the equilibrium of the stage game is unique

for a compact set of (
 , � ) 2 O , then there exists an equilibrium price vector p � (
 , � ) for

any (
 , � ) such that p � (
 , � ) is continuous in (
 , � ) on O.

Given Assumption 2, Assumption 3-ii) is satisfied for any matrix of scarcity effects 
 in

a neighborhood O that contains the zero matrix 
 = 0 by continuity. However, Assumption

3-ii) can fail for non-zero values of scarcity effects. In such cases, we can get multiplicities

of equilibria that can potentially result in price jumps that are not caused by a change in

inventory in the dynamic game. The following discussion illustrates this point.

Lemma 3 can fail if Assumption 3 is violated. To see this, consider logit demand such

that �1 =�2 = 0, and � = 1. In this case, Assumption 3 is equivalent to

€
s1(p) +�!

1
2s0(p)

Š€
s2(p) +�!

2
1s0(p)

Š
6= 1+

1 � s1(p) � s2(p)
s1(p)s2(p)

.

Note that this condition does not depend on the firms’ own-product scarcity effects !1
1

and !2
2. Therefore, we set own-product scarcity effects equal to zero and parameterize

competitor scarcity effects using a continuous function. We plot the parameterization of

(!2
1,!1

2) in Figure 1-(a). We plot the corresponding equilibrium prices for both firms in

15



1-(b). The �gure shows that multiplicity of equilibria can occur and there are jumps in

prices—even when scarcity effects change continuously.

Figure 1: Multiplicities in stage-game equilibria

(a) Parametrization of(! 1
2(x ), ! 2

1(x )) (b) Multiplicity in equilibrium prices

Note: In these graphics we parameterize(! 2
1, ! 1

2) with a curve(! 1
2(x ), ! 2

1(x )) =
�
� 15cos

�
�
2 x

�
, � 15sin

�
�
2 x

��
, x 2 [0,1], where we set

(! 1
1, ! 2

2) = (0,0), and assume logit demand with� = (1,1), � t = 1 and scaling factor� = 1. Panel (a) depicts the parameterized curve and
panel (b) equilibrium prices of both �rms given(! 2

1, ! 1
2) at varying values ofx .

3.1.3 Characterization of Continuous-time Limit

Using Lemma 3 and Lemma 5 in the appendix, we can generalize Lemma 1 to a duopoly as

long as the time horizon is not too long. We state the result formally below. The equilibrium

characterization is useful because it allows us to simulate equilibrium outcomes in our

empirical analysis for high-dimensional games.

Proposition 2 (Continuous-time Limit). Let Assumptions 1, 2, and 3 hold for
 = 0. For

everyK, there exists aT0(K) > 0, non-increasing in



where f 06= f , with boundary conditions (i) � f ,T (K) = 0 for all K, (ii) � f ,t (K) = 0 if



3.2 Additional Theoretical Results on Dynamic Price Competition

3.2.1 Prices as Strategic Substitutes vs Strategic Complements

In a static Bertrand game with imperfect substitutes, prices are strategic complements

for commonly used demand specifications, including logit and nested logit demand sys-

tems. Hence, competition unambiguously lowers prices. Due to the presence of competitor

scarcity effects, our model results in pricing games that may be strategic substitutes or

strategic complements, even for a simple demand systems.

In order to understand the strategic incentives when a competitor changes its price,

recall that the first derivative with respect to p f of firm f ’s payoff function is given by

p f 7!
@ sf

@ p f

�
p f � g f (p)

�
. By Assumption 1-ii), the first-order condition is satisfied if and

only if p f = g f (p). Furthermore, by Assumptions 1-i) and 3-i), there is a unique interior

maximum of firm f ’s payoff function for any competitor price p f 0 and g f (p) is strictly

decreasing.

How does firm f ’s best-response change if the competitor raises its price? Firm f ’s best

response increases, i.e., the competitor’s price is a strategic complement, if @ g f

@ p f 0
> 0 and it

decreases, i.e., the competitor’s price is a strategic substitute, if @ g f

@ p f 0
< 0. Typically, the

literature assumes monotonicity of the own-price elasticity in the competitor’s price, which

is, for example, guaranteed for log-concave demands. In this case, prices are strategic

complements. However, in our setting, the strategic forces are less straightforward du4.3462 Tuu46(straight)1(forw)10(a7(firm)]TJ/F144 1110759 ThT
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Proposition 3. Let �t � �, �t � �. Then, for K with K :=min
f

K f , the following holds:

p f ,t (K) = p �
f ,T +O(jT � t jK ), t ! T for f = 1,2,

i.e., price changes close to the deadline are at most of order K . If lim
t ! 0

@ K

(@ t )K � h ,t (K � eh ) 6= 0

for all f with Kh = K , then13

p f ,t (K) = p �
f ,T + � (jT � t jK ), t ! T for f = 1,2,

i.e., price changes are exactly of order K .



We illustrate these price competition effects in Figure 14 in Appendix D. We consider

firms with K =(5,4); (4,4); and (3,4) capacities. Note that (4,4) prices are the lowest, and

the firm with the lowest capacity XX14

Empirically, this means that we expect firms to benefit from dynamic pricing whenever

remaining capacities are distributed unequally across firms, as equally distributed capacities

result in intense price competition.

3.2.3 Independence of Irrelevant Alternatives and Markup Formula

Finally, we show that for demand specifications that satisfy the commonly used assumption

of “Independence of Irrelevant Alternatives (IIA),” the stage game admits an equilibrium

for any scarcity matrix 
 . Moreover, the game satisfies a markup formula.

Assumption 4 (Independence of Irrelevant Alternatives (IIA)).



Proposition 4 implies that equilibrium prices p � (
 , � ) satisfy a markup formula

p �
f (
 , � ) � cf (p f 0; 
 , � )

p f
= �

1

� f (p)
, (8)

where � f (p) =
@ sf (p)
@ p f

p f

sf (p)
is the elasticity of demand. Equation (8) shows that price dynamics



cal, nonstop traffic. We do not model the potential for consumers to connect while flying

between an origin-destination pair.

We observe bookings for consumers who purchased directly with the airline and on

other booking channels, e.g., online travel agencies. We label these bookings direct and

indirect, respectively. Because we observe all booking counts, we can construct the load

factor for each flight over time. We do not know the exact itinerary involved for each

booking, e.g., a round-trip versus a one-way booking. Therefore, we assume that the price

paid for each nonstop booking corresponds to the lowest available nonstop, one-way fare

for that flight.

Our pricing data come from a separate third-party data provider that gathers and dis-

seminates fare information for the airline industry. The data frequency matches the book-

ing information, i.e., we observe daily prices at the flight level. We observe fares even

when there are no bookings. Several prices are tracked, including tickets of different qual-

ities (cabins, fully refundable, etc.). We concentrate our analysis on the lowest available

economy class ticket because travelers overwhelmingly purchase the lowest fare offered

(Hortaçsu et al., 2021b). We do not model consumers choosing between cabins (economy

vs. first class) nor the pricing decision for different versions of tickets.

In order to gauge market sizes, we use clickstream search data provided to us by the air

carrier. See Hortaçsu et al. (2021a) and Hortaçsu et al. (2021b) for more details. Observed

searches understate true arrivals because some consumers may search and purchase through

online travel agencies or directly with competitors. We extrapolate total arrivals by scaling

up observed searches using hyperparameters that we describe below.

4.2 Route Selection

Our analysis concentrates on nonstop flight competition. We limit ourselves to routes where

nonstop service is provided by exactly two airlines—by our data provider and one competi-

tor. Our data contain more than one competitor airline, however, we will always refer to

the competing airline as “the competitor.” We eliminate routes where the third-party data is

23



incomplete, e.g., where a carrier provides direct bookings to the data provider but indirect

bookings are missing. In addition to these criteria, we select routes in which most OD traf-

fic is traveling nonstop. This selection criteria allows us to avoid the additional complexity

of modeling connecting traffic.

Figure 3: Summary Analysis from the DB1B Data

(a) Local versus Flow Traffic (b) CDF of Passenger-Weighted Fares
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(c) Total Passenger Counts
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Note: Panel (a) records the percentage of flow (connecting) vs local traffic and the percentage of non-stop traffic in the DB1B data. Panel
(b) plots the cdf of prices for selected routes and all dual-carrier markets. Panel (c) reports total passenger counts for both competitors.
Panel (d) reports the number of aggregate monthly departures for the routes in our sample.

In Figure 3 we provide summary analysis of the 58 routes in our data using the publicly

available DB1B data. These data contain 10% of bookings in the U.S. but lack information

on the booking and departure date. In panel (a), we show the percentage of total traffic

that is local versus the percentage of local traffic flying nonstop for our data compared to

all dual-carrier nonstop markets in the U.S. The selected markets primarily contain local

24







both above and below the 45-degree line—one competitor does not consistently sell a larger

fraction of capacity than the other carrier for all routes. We do observe some �ights with

substantial overselling. In our analysis, we restrict �rms to selling at most their capacity.

In the right panel we plot the average fare difference across competitors over time when

exactly two �ights are offered. Note that fares tend to be similar across competitors—

the average difference is less than $10. However, the gradient of the prices differs. One

competitor has relatively higher prices well in advance of departure and relatively lower

prices close to departure. Note that for over 50% of the data, prices across �rms are equal,

that is, there is substantial price matching.

Figure 5: Load Factor and Price Differences across Carriers

(a) Load Factors (b) Mean Price Difference

Note: Panel (a) shows the average load factor (across all �ights) at the route-departure date level for both competitors in blue. The
orange squares report average route-level load factors. The diagonal line is the 45-degree line. Panel (b) shows the average and the 25th
and 75 percentiles of the difference in prices for markets in which exactly two �ights across �rms are offered (one �ight per airline).

5 Demand Model and Estimates

5.1 Empirical Speci�cation

We model nonstop air travel demand using a nested logit demand model. Our model differs

from recent empirical work on airlines that use a mixed-logit model to model “business”

and “leisure” travelers (Lazarev, 2013; Williams, 2022; Aryal et al., 2021; Hortaçsu et al.,

27



2021b). We use a flexible nested-logit model with time-varying as it better maps to our

theoretical model and results in unique equilibrium price paths.17

Define a market as an origin-destination (r ), departure date (d ), and day before depar-

ture (t ) combination. Each flight j , leaving on date d , is modeled across t 2 f 0, ...,T g. The

first period of sale is t = 0, and the flight departs at T . We use a 90-day time horizon. With

daily data, we model demand at the daily level. Arriving consumers choose flights from the

choice set Jt ,d ,r that maximize their individual utilities, or select the outside option, j = 0.

There are two nests. The outside good belongs to its own nest, and all inside goods belong

to the second nest.

We specify consumer arrivals to be

�t ,d ,r = exp
�
�OD

r +�
DD
d +�

SD
t ,d + f (DFD)t

�
,

where � denote fixed effects for the route, departure date, and search date; f (�) is a polyno-



i chooses flight j if, and only if,

u i , j ,t ,d ,r � u i , j 0,d ,t ,r



estimated arrival rates to account for unobserved searches. This follows from a property of

the Poisson distribution and the assumption that consumers who search/purchase through

alternative platforms (travel agents, other carriers’ websites) have the same underlying pref-

erences. We first calculate the fraction of direct bookings by day before departure and then

scale up the estimated arrival rates using these these fractions. This adjusts arrivals for a

single carrier. In our preferred specification, we then double these arrival rates to account

for competitor indirect and direct searches, both of which are unobserved to us. We conduct

robustness to this hyperparameter in Appendix D.

We summarize the demand estimates in Table 2. We estimate the nesting parameter to

be 0.5 so that there is substantial substitution within inside goods. The price sensitivity

parameters vary by nearly a factor of ten over time. We present a time series plot of �t in

Figure 6. Almost all of our controls are significant, with day of the week and week of the

year having the most influence on market shares. The competitor FE is significantly less

important in driving variation in shares. We estimate the average own-price elasticity to be

-1.4.

Table 2: Demand Estimates Summary Table

Variable Symbol Estimate Std. Error. Range % Sig.

Nesting Parameter � 0.498 0.010 � �

Price Sens. � � � [-0.511 ,-0.074 ] 100.0

Competitor FE � 0.071 0.003 � �

Day of Week FE � � � [-1.637 ,-0.961 ] 100.0

Departure Time FE � � � [-0.462 ,-0.050 ] 100.0

Route FE � � � [-0.177 ,0.226 ] 94.4

Week FE � � � [-0.953 ,0.699 ] 86.0

Sample Size N 2,814,686

Avg Elasticity eD -1.438

Note: Demand estimates for the 58 routes in our sample.
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In Figure 6-(a), we plot average adjusted arrival rates as well as parts of the distribution

(5%, 25%, 75%, 95%) across markets. We estimate just a few arrivals per market 90

days before departure that then increases to over 10 passengers per day close to departure.

Recall that the average booking rate across flights is less than 2.0 (see Figure 4) so that



i) We consider only two products. Instead of investigating pricing in routes where we

observe a single flight operating by each firm, we adjust the choice set, utilities, and

capacities for all routes.

ii) We take the mean utilities across observed flights for each departure date and an

input.

iii) We take the maximum observed capacity for each route-carrier-departure date. Al-

though it may be natural to sum the capacities when restricting the choice set, we

have found that large capacities presents a significant computational burden.

iv) We use the observed arrival process for each route-departure date. We do not adjust

the estimated arrival processes as the inside good shares tend to be small. That is,

because most consumers choose the outside good, we do not scale down arrival rates

to account for smaller choice sets.

v) Finally, we handle flow (connecting traffic) bookings two ways. In our reported coun-

terfactuals here, we model these bookings via Poisson processes that the firm does

not internalize when pricing local demand. In the appendix we report counterfactuals

where we subtract off all connecting bookings at the start of the game. This affects

market outcomes because it reduces uncertainty for firms.

Benchmark Model

We approximate the continuous time model to solve for equilibrium prices for every depar-

ture date. We consider hourly decisions over 90 days. Both firms start with initial capacities

K f and K f 0. We solve via backward induction, which we outline here. In the last pricing

period, t = T , both � T (K) = 0 and 
 T (K) = 0. Therefore, both firms solve static revenue

maximize problems. We set the first-order conditions corresponding to the best response

functions equal to zero and solve for the fixed point. We denote the fixed-point price vector

by pT = p � (
 T ,�T )where 
 T = 0. Let us denote the stage-game payoff of firm f in period t

32



given price vector p and 
 by � f ,t (p, 
 ). Then, using the differential equation, we can write

�̇ f ,T (K) = � �T� f ,T (pT (K),0), which allows us to calculate � f ,T � � (K) = � f ,T (K)� � ��̇ f ,T (K)

and! f
f 0,T � � (K) = � f ,T � � (K)� � f ,T � � (K� ef 0). Given the updated own and scarcity effect pa-

rameters we again solve for equilibrium prices, pT � � = p �
T � � (
 T � � ,�T � � ).18 We continue

the induction backwards in time to t = 0.

Due to the large number of state variables, we store 
 t and p t every 24 hours (at the start

of a day) in order to use them in counterfactual simulations. We then appeal to modeling

demand via multinomial distributions after drawing arrivals from a Poisson distributions in

lieu of studying each consumer’s individual choice after drawing arrivals from a Bernoulli

distributions as in the theoretical model.

6.0.1 Pricing with Heuristics

We compare the benchmark model to two pricing heuristics where firms do not internalize

the scarcity of their competitor and firms also do not explicitly account for the fact that their

competitor is a strategic agent solving a dynamic pricing problem. In both heuristics, we

consider discrete prices as they are used in actual airline pricing practices. Applied theory





Figure 7: Benchmark Model Opportunity Costs
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.

Table 3: Counterfactual Results

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Deterministic 98.3 96.8 97.6 108.4 103.9 103.2 101.2 109.9



Figure 8: Counterfactual Summary Plots

(a) Prices over Time
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(c) Sellouts over Time
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Note: Panel (a) shows the average price over time for the benchmark, deterministic and uniform models. Panel (b) shows the average
load factors over time for the same three models. Panel (c) shows the average sellouts over time for the same three models. Panel (d)
shows the ratio of average cumulative welfare for the benchmark model with respect to the deterministic one, and for the benchmark
model with respect to the uniform one.
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Figure 9: Cumulative Surplus Differences Across Counterfatuals

(a) Cumulative CS Difference
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Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.

Figure 10: Heuristic Counterfactuals Prices and Load Factors

(a) Prices over Time
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(b) Load Factors over Time

Note: Panel (a) shows the average prices over time for the two heuristic models. Panel (b) shows the average load factors over time for
the same two models.
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A General Model with Many Firms and Many Products

In Appendix A, we formulate the generalized results stated in Section 3 for the duopoly

case. We directly prove those general statements in Appendix B.

A.1 Model Setup

We consider a market with F � 1 firms and J � F products, denoting the set of firms by

F := f 1, . . . ,F gand the set of products by J := f 1, . . . ,Jg. Each firm f sells products in J f ,

where (J f ) f 2F is a partition of J ; that is, J =
S

f 2F
J f and J f \ J f 0= ; for f 6= f 0. Thus,

no product is sold by more than one firm. Each firm f is equipped with an initial inventory

of their products j 2 J f , denoted by K j ,0 2 N. We assume that the demand system for the

products in J is as introduced in Section 2.1, and satisfies Assumptions 1 and 2.

The dynamic pricing game is the canonical generalization of the duopoly game intro-

duced in Section 2.3. In every period t , each firm f simultaneously sets prices p j ,t for its

products j 2 J f , and then a consumer arrives with probability



with boundary conditions (i) � f ,T+� (K; � ) � 0 for all K, (ii) � f ,t (K; � ) � 0 if K j = 0 for all

j 2 J f and (iii) � f ,t (K; � ) = �1 if K j < 0 for a j 2 J f , (iv) � f ,t (K � e j ; � ) = � f ,t (K; � ) if

K j = 0 for a j 62 Jf K j � 0 for all j 2 J f .. Then, we denote the





Lemma 4. For a logit demand system as defined in Equation 3, holding everything else

fixed, there exists a �̄ and a �̄ > 0 so that for all � > �̄ and � < �̄ , the cost matrix 
 t (K)

satisfies Assumption 4 for all t 2 [0,T ] and K � K0.

A.2.4 Additional Theoretical Results on Dynamic Price Competition

Capacity Distribution and Prices Assume that �t and sf ,t is independent of time, i.e.,




 . Further, there exist functions d j (p � f ; 
 , � ) so that the equilibrium prices of the stage

game coincide with the equilibrium prices of a game with a set J of players who each

simultaneously choose a price p j maximizing

sj (p)(p j � c j (p � j ; 
 , � ))+d j (p � j ; 
 , � )

with a cost function

c j (p � j ; 
 , � ) :=! f
j �

X

j 02J f nf j g

s̃j , j , Td1(p � j ( p j , f
jsj , j , p � j ( p

f
j



Lemma 5. Consider a continuous price function (
 , � ) 7! p � (
 , � ) = (p �
f (
 , � )) f on a com-

pact set O, and a bounded and continuous function A : RF � RJ �F . Let � f ,t (K; � ), f 2 F ,

be a solution to the difference equations

�
� f ,t +� (K; � ) � � f ,t (K; � )

�

�

f

= � �t A
€
p �

�

 (K; � )), � t

�
, 
 (K; � )

Š

where 
 (K; � ) = (! f
j ,t (K; � )) f , j , !

f
j ,t (K; � ) := � f ,t +� (K; � ) � � f ,t +� (K � e j ; � ), with bound-

ary conditions (i) � f ,T+� (K; � ) = 0, (ii) � f ,t (K; � ) = 0 if K j = 0 for all j 2 J f , (iii)

� f ,t (K; � ) = �1 if K j < 0 for a j 2 J f , and (iv) � f ,t (K � e j ; � ) = � f ,t (K; � ) if K j = 0

for a j 62 Jf , K j 0 � 0 for all j 02 J f . Then, (� f
t (K; � )) f converges to a limit (� f ,t (K)) f that

satisfies

�
�̇ f ,t (K)

�
f
= � �t A

€
p �

�

 (K), � t

�
, 
 (K)

Š
,

where 
 (K) = (! f
j ,t (K)) f , j , !

f
j ,t (K) := � f ,t (K; � ) � � f ,t +� (K � e j ), with boundary conditions

(i) � f ,T (K) = 0, (ii) � f ,t (K) = 0 if K j = 0 for all j 2 J f , (iii) � f ,t (K; ) = �1 if K j < 0 for a

j 2 J f , and (iv) � f ,t (K � e j ) = � f ,t (K) if K j = 0 for a j 62 Jf , K j 0 � 0 for all j 02 J f .

Proof. Since A is bounded, the difference equations show that (� f (K; � )) f 2F ,K� K0
is

equicontinuous and equibounded in t as � ! 0. Hence, by the Arzela-Ascoli Theorem,

there exist limit points (� f (K)) f 2F ,K� K0
. We claim that

�
� f ,t (K)

�
f
=

TZ

t

�u A
€
p � (

�

 u (K), � u

�
, 
 u (K)

Š
d u . (12)

To this end, we note that if we let du e� to be the largest number that is divisible by � and

smaller or equal than u

�
� f ,t (K; � )

�
f
=

TZ

t

�du e� A
€
p �

�

 du e� (K; � ),�du e�

�
, 
 du e� (K; � )

Š
d u . (13)
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We take the limit � ! 0 on both sides. The left-hand side of (13) converges to the left-hand

side of (12). On the right-hand side, 
 du e� (K; � ) converges to 
 u (K). Hence, by continu-

ity of p � and A the integrand in (13) converges to the integrand in (12). The dominated

convergence theorem finishes the proof. „

B.1.2 Continuity of stage game prices

Lemma 6. Let P � RJ be compact and convex and O a path-connected set of (
 , � ).

Further, let g : (q; 
 , � ) 7! p be defined as a function P � O ! P , where g is continuously

differentiable in q and continuous in 
 and � . If det(Dqg (q; 
 , � ) � I ) 6= 0 for all (q; 
 , � ) 2

P � � , then there is a unique p � (
 , � ) satisfying g (p � (� ); 
 , � ) = p � (
 , � ) and it depends

continuously on 
 and � .

Proof. The existence and uniqueness of p � (
 , � ) follows directly from Lemma 2 (Kellogg

(1976)) in Konovalov and Sándor (2010). To show continuity, we consider a sequence

(
 n , � n )n � 1 converging to some (
 1 , � 1 ). Thanks to path-connectedness of O there exists

a continuous path r : [0,1] ! O and a sequence an " 1 such that r (an ) = (
 n , � n ) and

r (1) = (
 1 , � 1 ). By Browder’s Theorem (Theorem 1.1 in Solan and Solan (2021)), the set

f (p � (r (a ));a ) : a 2 [0,1]g � P � [0,1] is connected. By the main theorem of connectedness,

each set f (p �
j (r (a ));a ) : a 2 [0,1]g � R� [0,1] is connected, for all j . By Burgess (1990), the

function a 7! p �
j (r (a )) is continuous, so p �

j (
 n , � n ) = p �
j (r (an )) ! p �

j (r (1)) = p �
j (
 1 , � 1 ).

„

B.2 Proofs of Single Firm Model

B.2.1 Proof of Lemma 1

The profit-maximizing prices of the stage game pM (! ) are implicitly given by (4).

g (q; ! , � ) := ! � (Dpst



is continuously differentiable in q, 
 and � by Assumption 1, and any fixed point must

satisfy q � ! and q � ! +1�̄ by Assumption ?? iii). Hence, the convergence to 4 follows

by Lemma 5.

B.2.2 Proof of Proposition 1

Proof. i) To see that � M ,t is decreasing in t , note that in (4), p j can always be chosen so

that objective function in the maximum is positive. Hence, �̇ M
t (K)< 0.

Next, we show that � M
t (K )> � M

t (K � e j ) for all j by induction in
P

j
K j .

Induction start: It is immediate that � M
t (e j ) � � M

t (0) = 0 for all j and t � T .

Induction hypothesis: Assume that � M
t (K )> � M

t (K � e j ) for all K such that
P

j
K j = K̄ .

Induction step: Now, consider a capacity vector K with
P

j
K j = K̄ +1. By sub-optimality

of the prices pM (! M
t (K � e j̃ )) given capacity vector K, we have

� M
t

�
K

�
�

TZ

t

�z

• X

j

sj ,z

�
pM (! M

z (K � e j̃ ))
��

p M
j ,z (!

M
z (K � e j̃ ))+ � M

z (K � e j )
�

� e
�

zR

t
�u

P

j 00
sj 00,u (pu



H (0; � ) = 0 by Assumption ?? iii). Since H is concave, it admits the representation

H (x; � ) = inf
s
(s� x � H � (s; � ))

where the concave H � (s; � ) = inf
x
(x � s � H (x; � )) is the concave conjugate of H , with

H � (0; � ) = 0. Moreover,

�̇ M
t (K) =�t H (r � t (K); � t )

where r � M
t (K) =

�
� M

t (K) � � M
t (K � e j )

�
j
. Thus, � M

t (K) is the value function for the optimal

control problem

� M
t (K) = sup

s2A
E

• TZ

t

�u H � (su ; � u )d u

�
�
�
�X

s
t =K

˜
=: sup

s
Jt (K,s)

where Xa
t is the process which jumps by � e j at rate �t sj ,t and s2 A are processes adapted

with respect to Xs, with the property sj ,t = 0 if X s
j ,t = 0 (Theorem 8.1 in Fleming and

Soner (2006)). Let s�
K be the optimal control in the previous equation and s�

K � 2 be the

optimal control when K is replaced by K � 2e j . Then, note that since s�
K,s�

K� 2e j
2 A ,

s�
K+s�

K� 2ej

2 2 A because the process
�
X

s�
K+s�

K� 2ef
2

s

�
s

can be chosen as
�

X
s�
K

s +X
s�
K� 2ef

s
2

�
s

68096 w 0 0 m 4 7.4919 Tf 4.0644 as

H �
142 11.2379 Tf 8.249 0 Td [(596 wv)15(er)40
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iii) To show that !M
j ,t (K t ) is a submartingale, we show that for any capacity vector K,

lim
� ! 0

E0

�
!M

j ,t +� (K t +� ) � !M
j ,t (K t )

�
�K t = K̄

�

�
� 0.

To this end, first, note that K t is right-continuous in t . Further, for K with K j = 0, we

set !M
j ,t (K) = 1 for all t . Thus, we are setting the opportunity cost of selling a unit if no

capacity is left to infinity, which is equivalent to the constraint of not being able to sell units

that are not available.

Then, we have for K̄ with K̄ j = 1 that

lim
� ! 0

E0

�
!M

j ,t +� (K t +� ) � !M
j ,t (K t )jK t = K̄]

�
> 0.

Next consider K̄ with K̄ j � 0. Then, we have that

lim
� ! 0

E0

�
!M

j ,t +� (K t +� ) � !M
j ,t (K t )jK t = K̄]

�
=

lim
� ! 0

E t . Further, for K with

lim
t



Hence, lim
� ! 0

E0

�
!M

j ,t +� (Kt +� )� !M
j ,t (Kt )jt =K̄]

� is equal to

� �t

� X

j 0

sj 0,t

�
pM

t (K̄)
��

p M
j 0,t (K̄) � !

M
j 0,t (K̄ � e j )

�
� sj 0,t

�
pM

t (K̄ � e j )
��

p M
j 0,t (K̄ � e j ) � !

M
j 0,t (K̄ � e j )

��

Then, note that by definition of pM
t (K̄ � e j ),

X

j 0

sj 0,t

�
pM

t (K̄)
��

p M
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This is equivalent to

8 j 2 J f : 2(p j � ! f
j ) +

sj (q� f ,p f )



We are interested in the limit as t ! T . First, lim
t ! T


 t = 0. Furthermore, we can write

!̇
f
j ,t (K) =�̇ f

t (K) � �̇ f
t (K � e j )

= � �
�
sf (p �

t (K))p
f ,�
t (K) � s(p �

t (K))!
f
t (K) � (s

f (p �
t (K � e j ))p

f ,�
t (K � e j ) � s(p �

t (K � e j ))!
f
t (K � e j ))

�

Thus, as t ! T , !̇ f
j ,t (K) = 0 if K j > 1. If j 2 J f and K j = 1, then !̇ f

j ,t (K) < 0. If j 62 J f

and K j = 1, then by the competition effect !̇ f
j ,t (K)> 0.

This implies that ṗ �
j ,T (K)< 0 if K j = 1 and ṗ �

j ,T (K) = 0 otherwise.

Induction assumption: If K j > n � 1 for all

t



are given by

p j �

�

!
f
j �

X

j 02J f nf j g

@ sj 0(p)
@ p j

@ sj (p)
@ p j

(p j 0 � ! f
j ) +

X

j 062Jf

sj 0(p)
@ p j

@ sj (p)
@ p j

!
f
j 0

�

= �
sj (p)
@ sj (p)
@ p j

.

Further, the observation that @ sj (p)
@ p j
= �

P

j 002J 0nf j g

@ sj 00(p)
@ p j

, and by Assumption ?? (Independence

of Irrelevant alternatives) it follows that

c (p � j ; ! ) :=!
f
j �

X

j 02J f nf j g

@ sj 0(p)
@ p j

@ sj (p)
@ p j

(p j 0 � ! f
j ) +

X

j 062Jf

sj 0(p)
@ p j

@ sj (p)
@ p j

!
f
j 0

=! f
j �

X

j 02J f nf j g

@ sj 0(p)
@ p j

P

j 02J 0nf j g

@ sj 0(p)
@ p j

(p j 0 � ! f
j ) +

X

j 062Jf

sj 0(p)
@ p j

P

j 002J 0nf j g

@ sj 00(p)
@ p j

!
f
j 0

=! f
j �

X

j 02J f nf j g

s̃j , j 0(p � j )(p j 0 � ! f
j ) +

X

j 062Jf

s̃j , j 0(p � j )!
f
j 0.

Thus, the first-order conditions of the stage game are equivalent to the first order conditions
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C Simple Logit and Nested Logit Calculations

C.1 Simple Logit Demand
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j vanishes relative to the probability.

D Additional Empirical Results

Figure 11: Simulated scarcity effects for K2 = 3, K1 varying

(a) Firm 1 own-product !1
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(b) Firm 2 own-product !2
2,t (K1,3)

0.0 0.2 0.4 0.6 0.8 1.0
t

0.25

0.00

0.25

0.50

0.75

2 2
,t

(K
)

(c) Firm 1 competitor !1
2,t (K1,3) (d) Firm 2 competitor !2
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Notes: The simulations assume �= (1,1), �t � 1 and logit demand with scaling factor � = 0.05.
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Figure 12: Strategic complements and substitutes in the stage game

(a) Strategic complements (b) Strategic substitutes

Notes: The simulations assume� = (1,1), � t � 1 and logit demand with scaling factor� = 0.05, as well as! 1
1 = ! 2

2 = 4. Panel (a) shows
both �rms' best response functions for! 1

2 = ! 2
1 = 4. Panel (b) shows both �rms' best response functions for! 1

2 = ! 2
1 = � 4.
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Figure 13: Simulated prices and scarcity effects

K = (5,4)
(a) Price paths over time (b) Own ! over time (c) Competitor ! over time

K = (4,4)
(d) Price paths over time (e) Own ! over time (f) Competitor ! over time

K = (3,4)
(g) Price paths over time (h) Own ! over time (i) Competitor ! over time

Notes: The simulations assume �= (1,1), �t � 1 and logit demand with scaling factor � = 0.05.
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Figure 14: Price paths for varying levels of capacity

(a) Sale of a product with minimum inventory
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(b) Sale of a product without minimum inventory

Notes: These simulations correspond to logit demand with parameter values � j = 1, � = 1, � = 10 and scale factor � = 0.05. Panel (a)
shows both firm’s price paths for K = (3,5) and K = (2,5). Panel (b) shows both firm’s price paths for K = (3,5) and K = (3,4).

66



Figure 15: Heuristic Models Pricing Example

(a) Deterministic Model
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(b) Lagged-Price Model
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Note: Panel (a) shows a firm’s fares and belief of the other firm’s price over time for an instance of the simulation in the lagged-price
model. Panel (b) shows a firm’s fares and belief of the other firm’s price over time for an instance of the simulation in the deterministic
model.
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Figure 16: Price Path Realizations comparing Benchmark model to Heuristics

(a) Price paths for the benchmark model (b) Price paths for the lagged algorithm

(c) Price paths for the deterministic algorithm

Notes: We assume demand follows a logit speci�cation with an initial capacity vector ofK0 = (2,2). Time is continuous fort 2 [0,1].
There are three panels: panel (a) depicts the equilibrium price path for the benchmark model, panel (b) considers prices if �rms use the
lagged model, and panel (c) considers prices if �rms use the deterministic model. The vertical lines mark realized sales times; the color
denotes the �rm that received the sale. These simulations correspond to the parameter values� j = 1, � = 1, � = 1, � = 10 andK0 = [2,2].
In the heuristic model, �rms assume that the competitor prices at the level given by the grey line.

Table 4: Recreation of Table 3 with restricted initial capacity

Price Firm 1 Rev. Firm 2 Rev. CS Welfare Q LF Sellouts

Benchmark 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Deterministic 94.1 95.5 95.9 108.4 103.0 105.1 102.0 178.3

Lagged 102.0 100.3 101.2 104.4 102.9 100.6 100.2 104.0

Uniform 97.5 78.1 77.3 113.7 98.5 101.1 99.9 242.0

Note:

68



Figure 17: Recreation of Fig. 7 with restricted initial capacity

(a) Own Omega
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(b) Competitor Omega

020406080
Days from Departure

35
30
25
20
15
10
5
0

Sc
ar

ci
ty

 E
ff

ec
t

Note: Panel (a) reports the own-firm scarcity effect over time for both firms. Panel (b) reports the cross-firm competitor scarcity effect
over time for both firms.
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Figure 18: Recreation of Fig. 8 with restricted initial capacity

(a) Prices over Time
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(b) Load Factors over Time

(c) Sellouts over Time (d) Cumulative Welfare Comparison

020406080
Days from Departure

97.5
100.0
102.5
105.0
107.5
110.0
112.5
115.0

W
el

fa
re

 ra
tio

Note: Panel (a) shows the average price over time for the benchmark, deterministic and uniform models. Panel (b) shows the average
load factors over time for the same three models. Panel (c) shows the average sellouts over time for the same three models. Panel (d)
shows the ratio of average cumulative welfare for the benchmark model with respect to the deterministic one, and for the benchmark
model with respect to the uniform one.
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Figure 19: Recreation of Fig. 9 with restricted initial capacity

(a) Cumulative CS Difference (b) Cumulative Revenue Difference

Note: Panel (a) reports the own-�rm scarcity effect over time for both �rms. Panel (b) reports the cross-�rm competitor scarcity effect
over time for both �rms.

Figure 20: Recreation of Fig. 10 with restricted initial capacity

(a) Prices over Time (b) Load Factors over Time

Note: Panel (a) shows the average prices over time for the two heuristic models. Panel (b) shows the average load factors over time for
the same two models.
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Figure 21: Example of a negative own Opportunity Costs

(a) Example own Omega over Time
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(b) Log. Abs. Own ! over Time
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Note: Panel (a) shows the own ! over time for a given state in one of our Benchmark solutions. Panel (b) shows the log of the absolute
value of the own ! over time for three states in one of our Benchmark solutions. The dotted lines represent the behavior these curves
would follow if the omegas were proportional to jT � t jmin (K).
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